首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   14篇
  国内免费   53篇
地球物理   8篇
地质学   133篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   10篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1989年   2篇
排序方式: 共有143条查询结果,搜索用时 171 毫秒
81.
羌塘盆地与特提斯域油气盆地类比及其含油气远景   总被引:3,自引:0,他引:3  
本文从羌塘盆地在特提斯域中的位置入手,对沉积充填、构造特征和地史演化加以论证,并与北带塔里木盆地进行具体对比。羌塘盆地与塔里木盆地沉积、构造、地史差异性十分明显,故其应划为中带,而不是北带。根据类比盆地选择原则,选取与羌塘盆地同属中带,沉积、构造,含油气性具可比性的伊朗卡维尔盆地、泰国呵叻盆地进行类比,发现羌塘盆地与两盆地沉积、构造、生储盖组合具相似性,唯油气保存条件较差。从亚洲特提斯域油气聚集地质特征分析,羌塘盆地油气远景毋庸质疑,只是因位于中带地质构造与改造十分复杂,油气远景虽好,但勘探难度相对较大。  相似文献   
82.
本文主要介绍1992年中美喜马拉雅和青藏高原深剖面与综合研究项目第一阶段(INDEPTHI-1)广角地震观测资料利用Seis81程序(Cerveny,1981)进行二维解释所获得的帕里一达吉地带的上地壳结构特征。主要成果为:(1)前寒武结晶基底之顶界表现为R1界面。据本项目地质调查,藏南拆离系(STDS)在帕里以北约10km处出露,向北缓倾并向地下延伸。认为R1界面不仅是结晶基底之顶界的反映,而且STD可能沿着R1界面展布,也即R1界面同时是一条沉积盖层和基底之间的拆离层。R1界面埋深3±0.6—11±0.6km。(2)上述拆离层在萨马达一达吉之间,以R1界面之上的负速度梯度楔状体(LVL)为特征。LVL可能是STDS活动时拖带下沉的中生代特提斯沉积,或可能是含水破碎带。(3)在结晶基底内部存在第二条拆离带(LVZ),表现为T2反射波组。LVZ在帕里埋深8.5±0.6km,向北陡倾,至萨马达为22.5±0.6km深;再向北,倾角变缓,至达吉之下,达27±0.6km深。LVZ在帕里─萨马达之间,厚仅0.5km;至达吉,增厚至5km;也具楔形负速度梯度带性质;它可能是花岗岩局部融熔体之反映...更多。(4)在萨马达─达吉。  相似文献   
83.
From the point of view of plate kinematics a unified convergence velocity model is employed to derive a series of kinematic equations for deformation of Himalaya and Lhasa-Gangdise terranes during the Himalayan orogeny.These equations describe terrane shortening,crust-upper mantle thickening,lateral strike-slip movement,plateau surface uplift,erosion planation and isostatic height of the crust,etc.These kinematic equations for terrane deformation derived on the basis of mass conservat  相似文献   
84.
The mantle sources of Tethyan basalts and gabbros from Iran,Tibet, the eastern Himalayas, the seafloor off Australia, andpossibly Albania were isotopically similar to those of present-dayIndian Ocean ridges and hotspots. Alteration-resistant incompatibleelement compositions of many samples resemble those of ocean-ridgebasalts, although ocean-island-like compositions are also present.Indian-Ocean-type mantle was widespread beneath the Neotethysin the Jurassic and Early Cretaceous, and present beneath atleast parts of the Paleotethys as long ago as the Early Carboniferous.The mantle beneath the Indian Ocean today thus may be largely‘inherited’ Tethyan mantle. Although some of theTethyan rocks may have formed in intra-oceanic back-arcs orfore-arcs, contamination of the asthenosphere by material subductedshortly before magmatism cannot be a general explanation fortheir Indian-Ocean-ridge-like low-206Pb/204Pb signatures. Supplyof low-206Pb/204Pb material to the asthenosphere via plumesis not supported by either present-day Indian Ocean hotspotsor the ocean-island-like Tethyan rocks. Old continental lowercrust or lithospheric mantle, including accreted, little-dehydratedmarine sedimentary material, provides a potential low-206Pb/204Pbreservoir only if sufficient amounts of such material can beintroduced into the asthenosphere over time. Anciently subductedmarine sediment is a possible low-206Pb/204Pb source only ifthe large increase of U/Pb that occurs during subduction-relateddewatering is somehow avoided. Fluxing of low-U/Pb fluids directlyinto the asthenosphere during ancient dewatering and introductionof ancient pyroxenitic lower-crustal restite or basaltic lower-arccrust into the asthenosphere provide two other means of creatingTethyan–Indian Ocean mantle, but these mechanisms, too,have potentially significant problems. KEY WORDS: Indian Ocean; mantle geochemical domains; ophiolites; Tethyan Ocean  相似文献   
85.
中国三叠纪牙形石的古生物地理分区   总被引:3,自引:0,他引:3  
本文根据中国三叠纪牙形石的地理分布、属种的分异度和特征属种的丰度,将中国三叠纪牙形石归属Kozur(1973)的特提斯生物大区亚洲生物省,在早-中三叠世,进一步二分为喜马拉雅生物亚省和华夏特提斯生物亚省,后者三分为西华夏特提斯生态区、东华夏特提斯生态区和右江生态区。在晚三叠世时,右江生态区已不复存在。  相似文献   
86.
Three global metallogenic belts were formed in the world during Mesozoic and post-Mesozoic times. Two of them are situated along the western and eastern Pacific margins, and the third one - the Tethyan Eurasian metallogenic belt (TEMB) is related to the domain of Eurasian plate and flanked on the south by the Afro-Arabian and Indian plates. The general tectonic evolution of the realm where the TEMB was formed is closely connected with the history of Tethys. The emplacement of ore deposits and the development of regional metallogenic units are related to a definitive time interval and to specific tectonic settings such as: (1) Intracontinental rifting along the northern margin of Gondwana and/or fragments already separated; (2) Oceanic environments (i.e. ophiolite complexes and ocean floor sediments) host podiform chromite deposits, volcano-sedimentary cupriferous pyrite deposits (Cyprus type), stratiform manganese deposits, and sporadically PGE deposits; (3) Subduction related settings involve mainly porphyry copper deposits, hydrothermal massive sulphide polymetallic deposits, and epithermal deposits. So far identified mineralization of porphyry copper exceeds in the TEMB over 100 million tons of copper metal; and(4) Collision and post-collision continent-continent setting includes deposits of lead-zinc, antimony, gold, in some sectors tin deposits, as well. The giant deposits of Li-pegmatite occur sporadically.The TEMB is almost a continuously mineralized belt, but within it, some sectors display specific features of tectonic settings, association of elements, minerals and morphogenetic types of mineralization.  相似文献   
87.
班公湖-怒江带、羌塘地块特提斯演化 与成矿地质背景   总被引:32,自引:2,他引:30  
早古生代—泥盆纪,研究区沉积环境以陆棚碎屑岩相和碳酸盐台地相为主,代表冈瓦纳大陆北缘和特提斯南侧的被动大陆边缘。石炭纪—二叠纪,本区进入特提斯南、北缘弧盆系统演化阶段,龙木错-双湖带北部、金沙江带南部和冈底斯带分别在石炭纪、二叠纪形成岩浆弧。中生代是特提斯南缘弧盆演化阶段,SSZ型蛇绿岩形成岩浆熔离型铬、镍、铂族金属矿床和热液型金矿。班公湖-怒江带特提斯在中侏罗世至早白垩世向南、北两侧俯冲并形成岩浆弧,该岩浆弧是重要的成矿带,形成斑岩铜矿、矽卡岩型磁铁矿和热液型多金属矿床。北羌塘东段侏罗纪弧后前陆盆地有利于形成沉积型、沉积-热液改造型和热液型铁、铜、锑、金矿床。晚白垩世碰撞作用主要与热液型矿床有关,分布范围较大,也可能存在晚白垩世至新生代碰撞阶段的斑岩铜矿。  相似文献   
88.
藏南仲巴地区早白垩世日朗组出露于特提斯喜马拉雅北亚带,整体为黄绿色火山岩屑砂岩,局部层位可见页岩与泥岩,分析为一套深海海底扇沉积组合。本文仔细分析了日朗组砂岩岩石学特征及鲍马序列和槽模沉积构造等沉积学特征,结果表明:日朗组砂岩成分成熟度和结构成熟度均不高,具有近源物源的特点;槽模构造古水流数据统计表明古流向由南向北,指示物质组分来源于南侧特提斯喜马拉雅和/或印度克拉通。砂岩碎屑组分统计结果表明日朗组的物源区构造背景属于克拉通内部及石英再旋回区。碎屑锆石U-Pb年龄频谱图对比进一步表明其物源区为印度稳定大陆边缘,外加一套早白垩世火山碎屑物质的输入。仲巴地区日朗组物源特征反映了印度大陆北缘早白垩世由深部断裂引起的一次强烈的火山事件,可能与印度大陆从澳大利亚-南极大陆裂解有关。  相似文献   
89.
Although the mid-Cretaceous is considered to be a typical interval of greenhouse climate and high sea level, cooling events associated with regressions were inferred in recent years. We conducted a biostratigraphic, chemostratigraphic, sequence stratigraphic and cyclostratigraphic investigation of upper Turonian–lower Coniacian marine strata in the Tethyan Himalaya zone, to retrace the sea-level variations and to clarify their global correlations. According to the planktonic foraminiferal zonation, the studied interval is part of the late Turonian–early Coniacian Marginoruncana sigali and D. concavata Zones. The carbon isotope curve shows a good correlation to reference curves in the Boreal and western Tethys realms with all major and minor late Turonian δ13C events identified, indicating that the C-isotope curve provides an excellent tool for global stratigraphic correlation in the Turonian. Based on the lithological variations of clastic input and physical and chemical proxies, the succession is divided into two third order and eight fourth order sequences. Spectral analysis indicates that fourth order sea-level changes were linked to the astronomically stable 405-kyr eccentricity cycle. Comparison with classic global sea-level curves, we suggest that late Turonian–early Coniacian sea-level changes along the southeastern Tethyan margin were controlled by eustasy. The significant regressions during ∼90–89.8 Ma and ∼92–91.4 Ma, which are recorded in different continents, may be interpreted as the result of continental ice expansion, giving some support to the notion that ephemeral polar ice sheets existed even in the super-greenhouse world.  相似文献   
90.
The planktic foraminifera of the Chuangde Formation (Upper Cretaceous Oceanic Red Beds, CORBs) as exposed at Tianbadong section, Kangmar, southern Tibet has been firstly studied for a detailed for a detailed biostratigraphy elaboration. A rich and well-preserved planktic foraminifera were recovered from the Chuangde Formation of the Tianbadong section and the Globotruncanita elevata, Globotruncana ventricosa, Radotruncana calcarata, Globotruncanella havanensis, Globotruncana aegyptiaca, Gansserina gansseri and Abathomphalus mayaroensis zones have been recognized. The planktic foraminiferal assemblage points to an early Campanian to Maastrichitian age for the CORBs of the eastern North Tethyan Himalayan sub-belt, which also provides a better understanding of the shifting progress of the Indian Plate to the north and the evolution of the Neotethyan ocean. The lithostratigraphy of the Chuangde Formation of the Tianbadong section comprises two lithological sequences observed in ascending succession: a lower unit (the Shale Member) mainly composed of purple (cherry-red, violet-red) shales with interbedded siltstones and siliceous rocks; and an upper unit (the Limestone Member) of variegated limestones. The strata of the Chuangde Formation in the Tianbadong section are similar to CORBs in other parts of the northern Tethyan Himalaya area of Asia (Gyangze, Sa’gya, Sangdanlin, northern Zanskar, etc.). The fossil contents of the Chuangde Formation in the sections (CORBs) studied provide a means of correlation with the zonation schemes for those of the northern Tethyan Himalayan sub-belt and the Upper Cretaceous of the southern Tethyan Himalayan sub-belt. Paleogeographic reconstruction for the Late Cretaceous indicates that the Upper Cretaceous Chuangde Formation (CORBs) and correlatable strata in northern Zanskar were representative of slope to basinal deposits, which were situated in the northern Tethyan Belt. Correlatable Cretaceous strata in Spiti and Gamba situated in the southern Tethyan Belt in contrast were deposited in shelf environments along the Tethyan Himalayan passive margin. CORBs are most likely formed by the oxidation of Fe(II)-enriched, anoxic deep ocean water near the chemocline that separated the oxic oceanic surface from the anoxic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号