首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10843篇
  免费   2562篇
  国内免费   5416篇
测绘学   400篇
大气科学   91篇
地球物理   1392篇
地质学   14765篇
海洋学   948篇
天文学   20篇
综合类   746篇
自然地理   459篇
  2024年   99篇
  2023年   402篇
  2022年   489篇
  2021年   498篇
  2020年   485篇
  2019年   585篇
  2018年   511篇
  2017年   490篇
  2016年   502篇
  2015年   611篇
  2014年   813篇
  2013年   658篇
  2012年   771篇
  2011年   874篇
  2010年   697篇
  2009年   738篇
  2008年   766篇
  2007年   692篇
  2006年   675篇
  2005年   596篇
  2004年   570篇
  2003年   556篇
  2002年   603篇
  2001年   518篇
  2000年   448篇
  1999年   408篇
  1998年   388篇
  1997年   426篇
  1996年   353篇
  1995年   369篇
  1994年   387篇
  1993年   315篇
  1992年   308篇
  1991年   315篇
  1990年   282篇
  1989年   233篇
  1988年   61篇
  1987年   71篇
  1986年   29篇
  1985年   25篇
  1984年   20篇
  1983年   9篇
  1982年   14篇
  1981年   18篇
  1980年   13篇
  1979年   8篇
  1950年   8篇
  1948年   13篇
  1945年   9篇
  1943年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
选取广西容县花岗岩残积土为研究对象,取击实曲线上3个不同含水率对应的压实样(最佳含水率及干侧、湿侧,后两者对应的干密度相同)分别进行了直剪试验、扫描电镜观测(SEM)和压汞试验(MIP),并从微观特征解释其力学性能的差异。结果表明:(1)花岗岩残积土在3种压实状态下具有相同应力-应变曲线形状,无明显峰值,抗剪强度在最佳状态时的最高,湿侧状态抗剪强度与干侧状态相近,3种状态下内摩擦角值差别较小,但黏聚力在最佳状态时最大,干侧和湿侧状态较最佳状态分别下降66.4%和43.1%;(2)花岗岩残积土在湿侧状态下普遍形成团聚体,团聚体之间呈架空结构,累积孔隙体积最大,为明显的双峰分布孔隙特征;在最佳状态下组构最密,高岭石片定向性排列;在干侧状态下高岭石片呈片架结构,累积孔隙体积最小;随着含水率的降低,土样双峰孔隙特征逐渐变得不明显;(3)花岗岩残积土在不同状态时的微观特性较好地解释其力学性质的差异。  相似文献   
82.
以当前我国备受关注的土体污染为背景,通过土柱试验研究了不同络合剂对Cu的淋洗效果,结果表明:乙二胺四乙酸二钠二水合物(ethylenediaminetetraacetic acid disodium saltdihydrate,EDTA)淋洗效果最佳,柠檬酸(citric acid,CIT)次之,氨三乙酸三钠盐单水合物(nitrilotriacetic acid trisodium salt monohydrate, NTA)淋洗效果相对最差;使用不同浓度的EDTA淋洗负载量为150 mg/kg的Cu污染土,浓度增大并未有效促进Cu的解吸,而较小浓度(0.005 mol/L)的EDTA是有效且经济的浓度,其对Cu的去除率达84%;0.015 mol/L的EDTA淋洗不同负载量的Cu污染土,随负载量增加,淋洗率下降,最高去除率为84%,但去除量增加;研究结果可为重金属污染土的淋洗修复工艺提供理论参考依据。  相似文献   
83.
为了研究花岗岩在不同围压、不同应变率下的动力学特性与本构行为,利用改进的分离式霍普金森压杆(SHPB),对其进行了试验测试,并将损伤统计理论引入鲍埃丁模型,对所得到的本构模型与试验数据进行拟合分析,进而探讨模型中各参数对应力-应变曲线的影响。结果表明:围压和应变率都能提升花岗岩的抗压强度,两者均与试样动态强度增长因子呈正相关,且围压的存在提高了岩石的塑性特性,应力-应变曲线上出现塑性屈服平台;主动围压下,试样的弹性模量有一定的提高,但总体上未见明显的率效应和围压效应;本文所构建的模型预测结果与不同围压下试样的应力-应变曲线均有较高的吻合度,可为相关工程设计与施工提供一定参考。  相似文献   
84.
新疆准噶尔盆地东部卡拉麦里地区发育我国典型的A型花岗岩型锡矿.通过对该区卡姆斯特和干梁子两个锡矿4个矿化蚀变带的岩相学及地球化学研究,发现矿体和致矿岩体是同源岩浆演化的结果,矿体是岩浆分异演化末期向流体演化过程中形成的.矿床的蚀变分带模式可分为两种:(1)(红色)细粒黑云母花岗岩→云英岩化细粒花岗岩→含锡石英脉;(2)细粒黑云母花岗岩→含锡云英岩→含锡石英脉.其蚀变带中岩石的地球化学组分总体迁移规律为:SiO2迁入,Na2O、K2O迁出,Fe2O3总体表现为迁入,Th/U值不断降低,表明硅化和碱交代作用贯穿整个成矿过程,成矿环境由碱性向酸性变化,并伴随氧逸度的升高.F、Cl、W、Cu、Bi、In、Pb、Rb、Nb、Ta等元素与成矿元素Sn的迁移、富集和沉淀密切相关,其中F和Cl是迁移过程中最活跃的组分,是Sn元素最大的"搬运工",Sn元素的富集与W、Cu、Bi、In等元素迁移呈正相关,反映流体作用与Sn成矿密切相伴,而与Pb、Rb、Nb、Ta等元素的迁移呈负相关,反映致矿岩体自身元素的稀释和带出,Sn的富集和成矿是在岩浆向流体演化过程中完成的.   相似文献   
85.
哈拉尕吐花岗岩基位于东昆仑东段,其中花岗闪长岩岩浆混合作用明显,是研究岩浆混合作用的良好对象.从岩石学、岩相学和矿物化学等方面对哈拉尕吐花岗岩基进行了详细研究.电子探针结果显示:寄主岩斜长石的An值同相对应包体中斜长石捕掳晶近似;包体中基质斜长石大部分具核边结构,核部和边部An值存在间断;部分包体中浅色基质斜长石的An值与具核边结构斜长石的边部近似;辉长闪长岩中斜长石具较高的An值.寄主岩角闪石同相对应包体中角闪石捕掳晶的结晶温度、压力和氧逸度较为接近;包体中基质角闪石的结晶温度和压力低于寄主岩角闪石,氧逸度稍高于寄主岩角闪石;辉长闪长岩角闪石具有最高的结晶温度和压力及最低的氧逸度.哈图沟剖面和德福胜剖面寄主岩中的斜长石和角闪石的成分具有一定差别.岩浆不同期次侵入结晶和岩浆自身演化,使不同地点斜长石和角闪石的成分和物理化学特征具有一定变化.镁铁质岩浆位于地壳深部,氧逸度较低,使结晶的角闪石具有较高的形成压力和较低的氧逸度,斜长石具较高An值;随着镁铁质岩浆注入寄主岩,由于环境突变,使斜长石受到熔蚀;由于岩浆上侵以及两种岩浆物理化学性质差别较大,导致温度、压力和水饱和度降低,氧逸度升高,使包体中残留岩浆快速结晶,形成具核边结构、浅色均一的斜长石,以及结晶程度较差、较高氧逸度的角闪石.   相似文献   
86.
侯江龙  李建康  张玉洁  李超 《地球科学》2018,43(6):2042-2054
四川康定甲基卡超大型锂矿是我国最大的硬岩型锂矿床之一,矿区中南部呈岩株状出露的二云母花岗岩常被认为是成矿伟晶岩的"矿源岩",对其开展Li同位素地球化学研究,对探讨矿区稀有金属的来源与演化具有重要意义.研究工作基于详细的野外地质调查,采用MC-ICP-MS方法对岩体锂同位素组成开展了研究.研究结果显示,岩体Li含量介于192×10-6~470×10-6,均值为309×10-6,δ7Li值介于-1.56‰~+0.90‰,均值为-0.24‰,与平均上地壳值基本一致,具有高Li低δ7Li的特征.δ7Li与Li、Rb、Ga、SiO2及εNd(t)不存在明显的相关性,岩体锂同位素组成反映了其形成时的源区特征,未受岩浆结晶分异作用和蚀变作用的影响.岩体岩石地球化学、同位素地球化学资料表明,岩浆来源以三叠系西康群砂泥岩的部分熔融为主,可能有部分深源物质的加入.此外,岩体Li同位素的变化规律表明伟晶岩的成矿流体来源于二云母花岗岩.岩体Li含量与Li同位素组合不仅可用来划分锂矿床类型,而且对稀有金属找矿具有一定的指导意义.   相似文献   
87.
华南晚中生代花岗岩及其形成的构造背景是目前研究的热点之一,通过对粤南地区A型花岗岩与镁铁质包体的年代学和地球化学组成的研究,探讨其岩石成因及构造意义.LA-ICP-MS锆石U-Pb测年结果显示,广东海宴花岗岩与镁铁质暗色微粒包体形成于早白垩世(分别为144.0±1.7 Ma和141.1±2.5 Ma).花岗岩具有典型的A型花岗岩特征:富硅、碱、铁而贫镁、钙,具有高的10 000×Ga/A1比值和Zr+Nb+Ce+Y含量等.包体具有钾玄质岩的特征:富碱更富钾、低钛、高铝及强烈富集大离子亲石元素和轻稀土元素等.花岗岩的ISr=0.706 6~0.712 2,εNd(t)=-7.01~-2.03,镁铁质包体则显示了稍低的ISr(0.708 5~0.711 1)和稍高的εNd(t)(-6.99~-2.23).元素及Sr-Nd同位素结果显示,花岗岩可能是中元古代地壳岩石部分熔融的产物,而钾玄质包体的初始岩浆可能源自俯冲沉积物交代的富集地幔.海宴A型花岗岩及其钾玄质包体的发现,暗示着区域早白垩世处于伸展的构造背景,不同于东南沿海地区的挤压构造应力环境.   相似文献   
88.
丁丽雪  黄圭成  夏金龙 《地球科学》2018,43(7):2350-2369
鄂城岩体位于鄂东南地区的最北部,是鄂东南地区的六大岩体之一.在该岩体的南缘接触带上产出了长江中下游地区最大的矽卡岩型铁矿床——程潮铁矿床.众多研究表明,程潮铁矿化与鄂城杂岩体的岩浆演化密切相关,然而目前对于成矿作用究竟是与花岗质岩还是闪长质岩有关仍存在争议.通过对鄂城杂岩体开展系统的锆石U-Pb年代学、元素地球化学和Sr-Nd-Hf同位素研究,结果表明该岩体主要由花岗岩、石英二长岩、花岗斑岩以及小面积的闪长岩组成,最早侵位于140±1 Ma(中粒闪长岩),之后依次侵位形成了细粒闪长岩(132±2 Ma)、花岗斑岩(130±2 Ma)、花岗岩(中细粒花岗岩129±2 Ma,中粒花岗岩129±1 Ma)和石英二长岩(129±1 Ma).根据全岩地球化学特征,鄂城杂岩体的岩石组成大致可以分为两组:(1)花岗岩类,包括花岗岩、花岗斑岩和角闪石英二长岩,钾质,具有高SiO2,低TiO2、FeOt、MnO、MgO含量等特征;(2)闪长岩类,包括中、细粒闪长岩,钠质,具有低SiO2,高TiO2、FeOt、MnO、MgO含量等特征.这些岩石均富集轻稀土元素(LREE)和大离子亲石元素(LILE,如Rb、Th等),亏损高场强元素(HFSE,如Nb、P、Ti)等,且花岗岩类具明显的负Eu异常,而闪长岩类则无此特征.在同位素组成方面,鄂城花岗岩类具有较负的全岩εNd(t)值(-11.7~-10.1)和锆石εHf(t)值(-22.91~-9.83),闪长岩类则具有稍高的全岩εNd(t)值(-7.6)和锆石εHf(t)值(-12.04~-4.69).元素和同位素地球化学特征共同表明,鄂城花岗岩类属于高分异Ⅰ型花岗岩,且主要来源于古元古代基底物质的部分熔融作用,源区可能有少量幔源物质的加入;闪长岩类主要来源于富集岩石圈地幔,且经历了一定的分离结晶作用.年代学结果显示,鄂城花岗岩类和细粒闪长岩的侵位时间均与程潮铁矿床的主成矿期吻合.结合野外接触关系以及前人的研究,程潮铁矿化可能与上述两类岩石均密切相关.从整个鄂东南地区的成矿作用来看,随着岩浆源区壳源物质贡献的增大以及岩浆分异程度的增加,岩浆作用与铁矿化的关系也更加密切.   相似文献   
89.
受界面效应影响,毛细水在层状土中运移规律还难以用描述均质土中水分运移规律的Lucas-Washburn(LW)渗吸模型进行描述。基于此,本文设计了层状土室内模型试验,采用分布式的主动加热光纤法(简称AHFO)监测毛细水上升过程。根据AHFO测试结果,进一步对LW模型进行了修正,提出了适用于描述层状土中毛细水上升规律的ILW模型,并对ILW模型进行了试验验证。试验结果表明:(1)当毛细水湿润锋抵达“黏土(下部)-砂土(上部)”界面时,会产生“毛细屏障作用”,从而导致上部砂土中毛细水含水率急剧下降;(2)“毛细屏障作用”由砂土和黏土中的基质吸力不均衡造成,基质吸力大小由含水率决定;(3)当毛细水湿润锋抵达“砂土(下部)-黏土(上部)”界面时,在界面处出现“反毛细屏障作用”,从而导致上部黏土层中的含水率比相邻下部砂土层含水率更高;(4)虽然常见的LW模型可准确预测均质土中毛细水上升高度及速率,但受“毛细屏障作用”和“反毛细屏障作用”影响,LW模型在层状土中失效;(5)相比LW模型,ILW模型精度更高,能够更加准确地描述层状土中毛细水上升规律。  相似文献   
90.
青海省东昆仑祁漫塔格地区肯德可克矿区外围东部发育一正长花岗岩体,主要矿物组合为正长石(50%~60%)+石英(20%~30%)+斜长石(10%~20%)+黑云母(1%~5%)。其LA-ICP-MS锆石U-Pb加权平均年龄为217.9±1.7 Ma(MSWD=0.74,n=20),形成时代为晚三叠世,与祁漫塔格地区铁多金属矿床基本同时形成。岩石地球化学组成具有高硅(Si O2=74.53%~75.28%)、富碱(K2O+Na2O=8.81%~8.95%)、富铁贫镁(Fe OT/Mg O=18.02~31.48)的特征,并具强烈的负Eu异常(δEu=0.04~0.05),富集Rb、Th、U、K、Ga,亏损Sr、Ba、Ta、P、Ti,显示其为准铝质A型花岗岩。正长花岗岩锆石εHf(t)为2.0~12.4,平均6.4,显示其源区具有壳幔混合作用的特征,壳幔物质交换为区内铁多金属矿化提供了大量成矿物质。该正长花岗岩属A2型花岗岩,暗示其形成于造山后的伸展构造体制,反映了祁漫塔格地区晚华力西-印支期造山旋回于晚三叠世由造山后期转为伸展阶段。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号