首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   1篇
综合类   1篇
  2018年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
南海及周边海域融合海表温度产品的验证与互较   总被引:1,自引:0,他引:1  
利用2008年—2009年Argo、Argos现场观测海表面温度SST,对OSTIA、MISST、MWSST以及NGSST4种融合SST产品在南海及其周边海域的适用性进行评估。验证结果表明,4种融合SST产品在外海的均方根误差RMS介于0.3—1.0℃,bias介于-0.1—0.6℃;除了NGSST在近岸出现明显暖偏外,其他3种融合SST与现场SST基本一致,OSTIA与现场SST的偏差为最小。对4种融合SST产品彼此间的互较也表明,它们在水深大于80 m的海区没有显著性差异,但彼此间的偏差会随水深变浅而增大。此外,各产品间偏差在冬季最大,夏季最小。本文为具有高时空覆盖度的融合SST产品在南海及其周边海域的应用提供了一个可靠的依据。  相似文献   
2.
The dynamics of the teleconnection between the Indian Ocean Dipole(IOD) in the tropical Indian Ocean and El Ni?o-Southern Oscillation(ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%–15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.The dynamics of the teleconnection between the Indian Ocean Dipole(IOD)in the tropical Indian Ocean and El Ni?o-Southern Oscillation(ENSO)in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations.The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean,which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO.In comparison,lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant,suggesting the short memory of the atmospheric bridge.A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans.The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%–15%depending on the baroclinic modes.The IOD-ENSO teleconnection is found to get stronger in the past century or so.Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century,which is found sensitive to the global warming forcing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号