首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   2篇
综合类   1篇
  2022年   2篇
  2021年   1篇
排序方式: 共有3条查询结果,搜索用时 8 毫秒
1
1.
基于高分辨率遥感影像的建筑物提取一直是研究的热点问题,深度学习的深层次特征提取方法,非常适合高分辨率影像中建筑物的提取,但使用深度学习提取建筑物时,大多以改变网络结构为主进行算法优化,很少与其他方法结合。本文研究在改进深度学习网络结构的基础上,结合影像模糊度约束增强、形态学建筑指数约束增强等方法,对建筑物提取方法进行更全面更有针对性的改进。本文主要改进内容为:① 提出PwDeepLab网络,该网络基于DeepLab v3+网络结构,在特征融合方式和损失函数等方面进行了改进。② 提出模糊度约束方法,在固定影像块大小的情况下,通过影像模糊度约束对影像进行上采样增强。③ 提出形态学指数约束方法,通过形态学建筑物指数(MBI)约束范围拉伸增强的方法,在较少改变原始影像特征的情况下,突出建筑信息。本文在Massachusetts数据集和武汉大学的Satellite Dataset Ⅱ(East Asia) 数据集上进行验证, 2个数据集的主要建筑类型存在较大区别。本文提出的方法在2个数据集上的精度相对于DeepLab v3+分别提高了10.9%和3.8%,相对于U-Net分别提高了10.0%和9.6%。实验结果表明本文提出的方法对建筑物提取效果有明显提升,且具有很好的鲁棒性和通用性。  相似文献   
2.
水利设施对水资源与水量调度、自然湿地生态保护与修复、资源和生态功能的利用及经济效益发展有重要作用。传统方法统计水利设施位置、数量等依赖于汇编资料,存在耗时长、资料更新不够及时以及具体地理位置不详等缺点,遥感为大规模监测水利设施提供了新的可能。本文以YOLO v3网络为基础,结合水利设施的特点,提出了一种基于大面幅影像快速检测水利设施的算法,主要分为两个方面:(1)改进的YOLO算法(E-YOLO)。E-YOLO提出PPA特征融合方法和等比预测框与四特征图交叉预测方法,对小样本等问题进行优化;改进损失函数,突出置信度损失;同时使用迁移学习的方法,读取特征提取部分的预训练模型参数。(2)基于E-YOLO算法和水体指数约束的大面幅水利设施检测算法。通过水体指数约束滑动步幅来解决影像面幅大、目标尺度小的问题,同时降低漏检率和误检率,再结合轮廓合并方法,优化检测结果。本研究中采用高分二号影像数据实现大面幅影像水利设施检测,实验结果表明:E-YOLO算法可以明显提高水利设施检测效果,相比平均F2精度相比YOLO v3提高了1.25%。且有更好的稳定性;水体指数约束的大面幅检测方法可以在保证效率的情况下提高检测精度,其F2精度相比大步幅和小步幅方法分别提高了3.72%和2.70%,为遥感水利设施检测提供了良好方案。  相似文献   
3.
高分辨率遥感影像地物复杂,分类难度大,而深度学习方法可以提取地物更多更深层次的特征信息,适用于高分辨率遥感影像的地物分类。本文研究对高分辨率影像中不透水地面、建筑、低矮植被、树、车辆等地物的高精度分类。结合遥感多地物分类的特点,以DeepLab v3+网络模型为基础,提出E-DeepLab网络模型。主要改进为:(1)改进编码器和解码器的结合方式,使用简洁有效的加成连接方式。(2)缩小单次上采样倍数,增加上采样层,提高编码器与解码器连接的紧密性。(3)使用改进的自适应权重损失函数,自动调节地物损失权重。同时根据数据特点,提出结合DSM、NDVI数据等多通道训练方式。使用两个地区数据进行实验,结果表明,两地区精度均明显优于原始DeepLab v3+模型和其他相关模型,Potsdam地区总体提取精度达到93.2%,建筑物提取精度达到97.8%,Vaihingen地区总体提取精度达到90.7%,建筑物提取精度达到96.3%。目视对比分类图和标准标记图,两者具有高度的一致性。本文所提出的E-DeepLab网络在高分辨率遥感影像地物高精度提取和分类中有较好的应用价值。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号