首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   833篇
  免费   153篇
  国内免费   22篇
测绘学   606篇
大气科学   33篇
地球物理   185篇
地质学   67篇
海洋学   25篇
综合类   48篇
自然地理   44篇
  2023年   2篇
  2022年   21篇
  2021年   55篇
  2020年   66篇
  2019年   37篇
  2018年   46篇
  2017年   76篇
  2016年   95篇
  2015年   90篇
  2014年   80篇
  2013年   101篇
  2012年   50篇
  2011年   71篇
  2010年   34篇
  2009年   34篇
  2008年   22篇
  2007年   21篇
  2006年   11篇
  2005年   7篇
  2004年   12篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   9篇
  1998年   12篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1987年   1篇
  1979年   1篇
  1978年   1篇
  1954年   2篇
排序方式: 共有1008条查询结果,搜索用时 15 毫秒
1.
Quantifying geomorphic conditions that impact riverine ecosystems is critical in river management due to degraded riverine habitat, changing flow and thermal conditions, and increasing anthropogenic pressure. Geomorphic complexity at different scales directly impacts habitat heterogeneity and affects aquatic biodiversity resilience. Here we showed that the combination of continuous spatial survey at high resolution, topobathymetric light detection and ranging (LiDAR), and continuous wavelet analysis can help identify and characterize that complexity. We used a continuous wavelet analysis on 1-m resolution topobathymetry in three rivers in the Salmon River Basin, Idaho (USA), to identify different scales of topographic variability and the potential effects of this variability on salmonid redd site selection. On each river, wavelet scales characterized the topographic variability by portraying repeating patterns in the longitudinal profile. We found three major representative spatial wavelet scales of topographic variability in each river: a small wavelet scale associated with local morphology such as pools and riffles, a mid-wavelet scale that identified larger channel unit features, and a large wavelet scale related to valley-scale controls. The small wavelet scale was used to identify pools and riffles along the entire lengths of each river as well as areas with differing riffle-pool development. Areas along the rivers with high local topographic variability (high wavelet power) at all wavelet scales contained the largest features (i.e., deepest or longest pools) in the systems. By comparing the wavelet power for each wavelet scale to Chinook salmon redd locations, we found that higher small-scale wavelet power, which is related to pool-riffle topography, is important for redd site selection. The continuous wavelet methodology objectively identified scales of topographic variability present in these rivers, performed efficient channel-unit identification, and provided geomorphic assessment without laborious field surveys.  相似文献   
2.
Upland river systems in the UK are predicted to be prone to the effects of increased flood magnitudes and frequency, driven by climate change. It is clear from recent events that some headwater catchments can be very sensitive to large floods, activating the full sediment system, with implications for flood risk management further down the catchment. We provide a 15-year record of detailed morphological change on a 500-m reach of upland gravel-bed river, focusing upon the geomorphic response to an extreme event in 2007, and the recovery in the decade following. Through novel application of two-dimensional (2D) hydrodynamic modelling we evaluate the different energy states of pre- and post-flood morphologies of the river reach, exploring how energy state adjusts with recovery following the event. Following the 2007 flood, morphological adjustments resulted in changes to the shear stress population over the reach, resulting in higher shear stresses. Although the proportion of shear stresses in excess of those experienced using the pre-flood digital elevation model (DEM) varied over the recovery period, they remained substantially in excess of those experienced pre-2007, suggesting that there is still potential for enhanced bedload transport and morphological adjustment within the reach. Although volumetric change calculated from DEM differencing does indicate a reduction in erosion and deposition volumes in the decade following the flood, we argue that the system still has not fully recovered to the pre-flood state. We further argue that Thinhope Burn, and other similarly impacted catchments in upland environments, may not recover under the wet climatic phase currently being experienced. Hence systems like Thinhope Burn will continue to deliver large volumes of sediment further down river catchments, providing new challenges for flood risk management into the future.  相似文献   
3.
新一代星载激光雷达卫星ICESat-2首次采用了微脉冲光子计数激光雷达技术,由于单光子探测的灵敏性导致数据在大气和地表下层产生了大量噪声,因此对光子计数激光雷达点云数据实现信号和噪声的分离是开展进一步应用研究的前提和基础。本文选择美国俄勒冈州和弗吉尼亚州2个研究区,采用MATLAS数据,根据光子点云数据的特点构造了12个光子点云特征,对所构造的特征利用随机森林进行变量筛选,用机器学习方法对光子点云进行分类,并将建立好的模型推广到整个研究区。研究结果表明,本文构建的分类器分类总精度达到了96.79%,Kappa系数为0.94,平均生产者精度和用户精度分别为97.1%和96.8%。在相对弱噪声、平坦地形区域和强噪声、复杂地形区域都取得较好的分类结果。本文结果显示了基于少量样本通过机器学习的方法构建模型,可以推广到较大范围区域的光子点云分类应用中。  相似文献   
4.
机载LiDAR在公路勘测方面的用途日益广泛。该文对直升机机载LiDAR在高速公路改扩建中的应用技术路线可行性进行了研究论证,从地面控制测量、点云数据获取、点云数据处理、成果应用等多个方面进行了阐述,通过分析LiDAR点云数据在5种不同地面控制点布设方案校正下的点云数据精度,论证了利用地面控制点对直升机机载LiDAR点云数据进行平面和高程校正的可行性。  相似文献   
5.
Soil moisture has a pronounced effect on earth surface processes. Global soil moisture is strongly driven by climate, whereas at finer scales, the role of non‐climatic drivers becomes more important. We provide insights into the significance of soil and land surface properties in landscape‐scale soil moisture variation by utilizing high‐resolution light detection and ranging (LiDAR) data and extensive field investigations. The data consist of 1200 study plots located in a high‐latitude landscape of mountain tundra in north‐western Finland. We measured the plots three times during growing season 2016 with a hand‐held time‐domain reflectometry sensor. To model soil moisture and its temporal variation, we used four statistical modelling methods: generalized linear models, generalized additive models, boosted regression trees, and random forests. The model fit of the soil moisture models were R2 = 0.60 and root mean square error (RMSE) 8.04 VWC% on average, while the temporal variation models showed a lower fit of R2 = 0.25 and RMSE 13.11 CV%. The predictive performances for the former were R2 = 0.47 and RMSE 9.34 VWC%, and for the latter R2 = 0.01 and RMSE 15.29 CV%. Results were similar across the modelling methods, demonstrating a consistent pattern. Soil moisture and its temporal variation showed strong heterogeneity over short distances; therefore, soil moisture modelling benefits from high‐resolution predictors, such as LiDAR based variables. In the soil moisture models, the strongest predictor was SAGA (System for Automated Geoscientific Analyses) wetness index (SWI), based on a 1 m2 digital terrain model derived from LiDAR data, which outperformed soil predictors. Thus, our study supports the use of LiDAR based SWI in explaining fine‐scale soil moisture variation. In the temporal variation models, the strongest predictor was the field‐quantified organic layer depth variable. Our results show that spatial soil moisture predictions can be based on soil and land surface properties, yet the temporal models require further investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
Reliable quantification of savanna vegetation structure is critical for accurate carbon accounting and biodiversity assessment under changing climate and land-use conditions. Inventories of fine-scale vegetation structural attributes are typically conducted from field-based plots or transects, while large-area monitoring relies on a combination of airborne and satellite remote sensing. Both of these approaches have their strengths and limitations, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation structural parameterization – recording and quantifying 3D structural detail that is not possible from manual field-based or airborne/spaceborne methods. However, traditional TLS approaches suffer from similar spatial constraints as field-based inventories. Given their small areal coverage, standard TLS plots may fail to capture the heterogeneity of landscapes in which they are embedded. Here we test the potential of long-range (>2000 m) terrestrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna vegetation 3D structure at hillslope scales. We used LR-TLS to sample entire savanna hillslopes from topographic vantage points and collected coincident plot-scale (1 ha) TLS scans at increasing distances from the LR-TLS station. We merged multiple TLS scans at the plot scale to provide the reference structure, and evaluated how 3D metrics derived from LR-TLS deviated from this baseline with increasing distance. Our results show that despite diluted point density and increased beam divergence with distance, LR-TLS can reliably characterize tree height (RMSE = 0.25–1.45 m) and canopy cover (RMSE = 5.67–15.91%) at distances of up to 500 m in open savanna woodlands. When aggregated to the same sampling grain as leading spaceborne vegetation products (10–30 m), our findings show potential for LR-TLS to play a key role in constraining satellite-based structural estimates in savannas over larger areas than traditional TLS sampling can provide.  相似文献   
7.
Inland water bodies are globally threatened by environmental degradation and climate change. On the other hand, new water bodies can be designed during landscape restoration (e.g. after coal mining). Effective management of new water resources requires continuous monitoring; in situ surveys are, however, extremely time-demanding. Remote sensing has been widely used for identifying water bodies. However, the use of optical imagery is constrained by accuracy problems related to the difficulty in distinguishing water features from other surfaces with low albedo, such as tree shadows. This is especially true when mapping water bodies of different sizes. To address these problems, we evaluated the potential of integrating hyperspectral data with LiDAR (hereinafter “integrative approach”). The study area consisted of several spoil heaps containing heterogeneous water bodies with a high variability of shape and size. We utilized object-based classification (Support Vector Machine) based on: (i) hyperspectral data; (ii) LiDAR variables; (iii) integration of both datasets. Besides, we classified hyperspectral data using pixel-based approaches (K-mean, spectral angle mapper). Individual approaches (hyperspectral data, LiDAR data and integrative approach) resulted in 2–22.4 % underestimation of the water surface area (i.e, omission error) and 0.4–1.5 % overestimation (i.e., commission error).The integrative approach yielded an improved discrimination of open water surface compared to other approaches (omission error of 2 % and commission error of 0.4 %). We also evaluated the success of detecting individual ponds; the integrative approach was the only one capable of detecting the water bodies with both omission and commission errors below 10 %. Finally, the assessment of misclassification reasons showed a successful elimination of shadows in the integrative approach. Our findings demonstrate that the integration of hyperspectral and LiDAR data can greatly improve the identification of small water bodies and can be applied in practice to support mapping of restoration process.  相似文献   
8.
The role of hummocky terrain in governing runoff routing and focussing groundwater recharge in the Northern Prairies of North America is widely recognised. However, most hydrological studies in the region have not effectively utilised information on the surficial geology and associated landforms in large-scale hydrological characterization. The present study uses an automated digital elevation model (DEM) analysis of a 6500-km2 area in the Northern Prairies to quantify hydrologically relevant terrain parameters for the common types of terrains in the prairies with different surficial deposits widespread in the prairies, namely, moraines and glaciolacustrine deposits. Runoff retention (and storage) capacity within depressions varies greatly between different surficial deposits and is comparable in magnitude with a typical amount of seasonal snowmelt runoff generation. The terrain constraint on potential runoff retention varies from a few millimetres in areas classified as moraine to tens of millimetres in areas classified as stagnant ice moraine deposits. Fluted moraine and glaciolacustrine deposits have intermediate storage capacity values. The study also identified the probability density function describing a number of immediate upstream neighbours for each depression in a fill-and-spill network. A relationship between depression parameters and surficial deposits, as well as identified depression network structure, allows parametrisation of hydrologic models outside of the high-resolution DEM coverage, which can still account for terrain variation in the Prairies.  相似文献   
9.
Soil loss caused by erosion has enormous economic and social impacts. Splash effects of rainfall are an important driver of erosion processes; however, effects of vegetation on splash erosion are still not fully understood. Splash erosion processes under vegetation are investigated by means of throughfall kinetic energy (TKE). Previous studies on TKE utilized a heterogeneous set of plant and canopy parameters to assess vegetation's influence on erosion by rain splash but remained on individual plant- or plot-levels. In the present study we developed a method for the area-wide estimation of the influence of vegetation on TKE using remote sensing methods. In a literature review we identified key vegetation variables influencing splash erosion and developed a conceptual model to describe the interaction of vegetation and raindrops. Our model considers both amplifying and protecting effect of vegetation layers according to their height above the ground and aggregates them into a new indicator: the Vegetation Splash Factor (VSF). It is based on the proportional contribution of drips per layer, which can be calculated via the vegetation cover profile from airborne LiDAR datasets. In a case study, we calculated the VSF using a LiDAR dataset for La Campana National Park in central Chile. The studied catchment comprises a heterogeneous mosaic of vegetation layer combinations and types and is hence well suited to test the approach. We calculated a VSF map showing the relation between vegetation structure and its expected influence on TKE. Mean VSF was 1.42, indicating amplifying overall effect of vegetation on TKE that was present in 81% of the area. Values below 1 indicating a protective effect were calculated for 19% of the area. For future work, we recommend refining the weighting factor by calibration to local conditions using field-reference data and comparing the VSF with TKE field measurements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
10.
为克服传统农田土地平整测量方法耗时费力的特点,提出采用LiDAR技术对农田地形进行重建的探索性研究。通过HDL-32E型激光雷达等搭建了系统的硬件平台,应用C++语言编写了系统数据的采集程序;在此基础上对激光雷达所采集数据进行了标定,研究了农田地形重建系统中不同坐标系的转换方法;同时基于最小值去噪法设计了更适用于农田地形点云去噪的均值限差去噪法。通过对比在农田起伏较大区域不同坡度范围内RTK与激光雷达所测单元个数,对系统精度进行了评价;最后实现了车载农田地形重建系统的界面显示、应用与精度评估。结果表明,在10°~15°、25°~30°大坡度范围内激光雷达所获农田地形更为丰富,精度更高。该方法重建的农田地形模型点云数据和原始农田地形点云数据投影面积逼近度可达93%,验证了本文研究方法应用于农田地形环境重建的可行性,同时为今后的土地精细平整工作提供了理论参考与依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号