首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2287篇
  免费   237篇
  国内免费   143篇
测绘学   92篇
大气科学   122篇
地球物理   538篇
地质学   452篇
海洋学   639篇
天文学   1篇
综合类   98篇
自然地理   725篇
  2024年   4篇
  2023年   30篇
  2022年   55篇
  2021年   74篇
  2020年   57篇
  2019年   68篇
  2018年   66篇
  2017年   91篇
  2016年   83篇
  2015年   90篇
  2014年   113篇
  2013年   111篇
  2012年   117篇
  2011年   187篇
  2010年   118篇
  2009年   192篇
  2008年   211篇
  2007年   179篇
  2006年   154篇
  2005年   110篇
  2004年   105篇
  2003年   92篇
  2002年   68篇
  2001年   48篇
  2000年   40篇
  1999年   28篇
  1998年   34篇
  1997年   32篇
  1996年   18篇
  1995年   26篇
  1994年   15篇
  1993年   7篇
  1992年   11篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有2667条查询结果,搜索用时 15 毫秒
1.
Springs are the point of origin for most headwater streams and are important regulators of their chemical composition. We analysed solute concentrations of water emerging from 57 springs within the 3 km2 Fool Creek catchment at the Fraser Experimental Forest and considered sources of spatial variation among them and their influence on the chemical composition of downstream water. On average, calcium and acid neutralizing capacity (bicarbonate-ANC) comprised 50 and 90% of the cation and anion charge respectively, in both spring and stream water. Variation in inorganic chemical composition among springs reflected distinct groundwater sources and catchment geology. Springs emerging through glacial deposits in the upper portion of the catchment were the most dilute and similar to snowmelt, whereas lower elevation springs were more concentrated in cations and ANC. Water emerging from a handful of springs in a geologically faulted portion of the catchment were more concentrated than all others and had a predominant effect on downstream ion concentrations. Chemical similarity indicated that these springs were linked along surface and subsurface flowpaths. This survey shows that springwater chemistry is influenced at nested spatial scales including broad geologic conditions, elevational and spatial attributes and isolated local features. Our results highlight the role of overlapping factors on solute export from headwater catchments.  相似文献   
2.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
3.
《China Geology》2019,2(3):325-332
Based on the 39 surface sediment samples collected in the flood season and the dry season in 2012 respectively and the measured hydrological data in October 2012, the sediment grain size characteristics has been analyzed and the response mechanism of surface sediments to estuarine hydrodynamics was revealed by calculating the range of waves and tidal currents. The results show that: (1) The grain size of the surface sediment samples decreased gradually from land to sea in the flood season. The fine sediment was redistributed under marine hydrodynamics in the dry season and the sediments showed coarser tendency ingeneral; (2) tidal current stirring sediment was very obvious in Dagu River estuary area, and wave stirring sediments mainly occurred in the tidal flat area and estuary sand bar area; (3) in the flood season, surface sediment sat the estuary were transported towards south and southeast. In the dry season, surface sediments were transported towards southwest at the north area of Jiaozhou Bay Bridge, and sediments were transported towards northeast area at the south of Jiaozhou Bay Bridge.  相似文献   
4.
The water level of marsh wetlands is a dominant force controlling the wetland ecosystem function, especially for aquatic habitat. For different species, water level requirements vary in time and space, and therefore ensuring suitable water levels in different periods is crucial for the maintenance of biodiversity in marsh wetlands. Based on hydrodynamic modelling and habitat suitability assessment, we determined suitable dynamic water levels considering aquatic habitat service at different periods in marsh wetlands. The two-dimensional hydrodynamic model was used to simulate the temporal and spatial variation of water level. The habitat suitability for target species at various water levels was evaluated to obtain the fitting curves between Weighted Usable Area (WUA) and water levels. And then suitable water levels throughout the year were proposed according to the fitting curves. Using the Zhalong Wetland (located in northeastern China) as a case study, we confirmed that the proposed MIKE 21 model can successfully be used to simulate the water level process in the wetland. Suitable water levels were identified as being from 143.9–144.2 m for April to May, 144.1–144.3 m for June to September, and 144.3–144.4 m for October to November (before the freezing season). Furthermore, proposed water diversion schemes have been identified which can effectively sustain the proposed dynamic water levels. This study is expected to provide appropriate guidance for the determination of environmental flows and water management strategies in marsh wetlands.  相似文献   
5.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   
6.
A suite of instruments was deployed in a coastal wetland ecosystem in the Albemarle estuarine system, North Carolina (USA), to characterize wind‐driven transport of saltwater through a constructed (man‐made) channel. Flow velocity, electrical conductivity, and stage were measured in a representative channel over a 2‐month period from May to July 2014, during which 4 wind tides were observed. Collected data show that thousands of metric tons of salt were advected through the channel into coastal wetlands during each event, which lasted up to 4 days. The results reveal that as much as 36% of advected salts accumulated in the wetlands, suggesting that the cumulative effects of these events on the health of coastal wetlands in the Albemarle system may be substantial due to the abundance of constructed channels and the frequency of wind‐driven tidal events. This study is the first to quantify wind‐driven salt fluxes through constructed channels in coastal wetland settings.  相似文献   
7.
山东昌邑国家级海洋生态特别保护区是目前国内唯一以柽柳林生态系统为主要管理和保护对象的国家级海洋保护区。为系统、全面地了解保护区内生态环境和保护物种的变化趋势,文章对山东昌邑国家级海洋生态特别保护区生态环境现状进行了监测与评价,并根据评价结果,分析了保护区保护与管理中存在的问题。研究表明,该保护区生态环境一直处于亚健康状态,为促进保护及管护,提出了加强保护区生态建设,改变保护区开发利用模式;加强能力建设,实现保护区动态监控;协调发展与保护的关系,实现资源可持续利用;大力开展柽柳生态修复,恢复柽柳的资源状况的对策建议。  相似文献   
8.
异化铁还原是湿地土壤和沉积物中重要的生物地球化学过程,也是有机质矿化的主要途径之一。湿地干湿交替等过程会使土壤的氧化还原状态发生改变,影响铁元素及与其相关的元素的迁移和转化。总结了湿地土壤和沉积物中异化铁还原过程及其与碳、磷、硫等元素在生物地球化学循环关键过程中的相互作用,阐述了湿地土壤和沉积物中异化铁还原过程对微量金属元素迁移和转化的影响,分析了影响湿地土壤和沉积物异化铁还原过程的主要环境因子。未来相关研究应集中于湿地土壤和沉积物中异化铁还原微生物分析和纯化、不同有机质形式对异化铁还原过程的影响以及异化铁还原对土壤有机质矿化的贡献。  相似文献   
9.
叶翔  李靖  王爱军 《海洋学报》2018,40(7):79-89
滨海湿地作为人类活动和全球变化反应最为敏感的区域,其沉积记录可以反映出周边地区环境变化及人类活动信息。珠江口淇澳岛滨海湿地钻孔分析结果表明,在中全新世期间淇澳岛附近海域为河口湾环境,在风化层以上开始出现淤积,但在4 200 a BP前后受极冷气候的影响,沉积物粗化;自2 500 a BP以来,沉积环境相对稳定,在小冰期期间略有变化。沉积速率计算结果显示:淇澳岛附近海域自中全新世高海面以来的平均沉积速率为0.29 cm/a,4 160~2 500 a BP、2 500 a BP-1488年、1488-1893年、1893-1986年、1990-2007年期间的平均沉积速率分别为:0.17 cm/a、0.23 cm/a、0.35 cm/a、1.37 cm/a和5.94 cm/a,沉积速率逐渐增大,反映了珠江三角洲演化过程中沉积相与沉积环境的变化;1986-1990年期间的海堤建造极大地扰动了该钻孔上部的沉积过程,在工程施工期间共沉积了厚度约112 cm的沉积层,而在海堤建成后,沉积速率也显著增大。沉积物总有机碳、总氮和C/N值的垂向分布表明,在4 160~2 500 a BP期间受海洋环境影响较大,沉积物中有机碳以海源为主,2 500 a BP以来沉积物中碳、氮含量明显增大,C/N也相应变大,有机碳主要来源于陆源输入,但在小冰期期间海源有机碳贡献略有所增大;近百年来由于受人类活动影响显著,陆源有机碳的贡献快速增加。  相似文献   
10.
关于海岸破波带内悬沙浓度水平和垂向分布的研究对于计算海岸输沙率和地形演变具有重要意义。本研究进行了规则波、波群和不规则波三种波浪情况破波带内悬沙浓度的水平和垂向分布的试验测量。试验在大尺度波浪水槽进行,接近实际海岸波况尺度。给出了破波带内多断面悬沙垂向分布的细致测量结果,并以此为基础给出了预报实际海岸破波带内悬沙浓度水平和垂向分布解析表达式,讨论了形成这些分布的物理原因和不同波况、不同破波带区域对分布的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号