首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44519篇
  免费   5383篇
  国内免费   5224篇
测绘学   9783篇
大气科学   4342篇
地球物理   5217篇
地质学   11716篇
海洋学   3775篇
天文学   6218篇
综合类   4164篇
自然地理   9911篇
  2024年   87篇
  2023年   446篇
  2022年   1477篇
  2021年   1760篇
  2020年   1762篇
  2019年   1760篇
  2018年   1456篇
  2017年   2128篇
  2016年   2040篇
  2015年   2140篇
  2014年   2749篇
  2013年   3109篇
  2012年   2951篇
  2011年   3017篇
  2010年   2577篇
  2009年   2987篇
  2008年   3006篇
  2007年   3033篇
  2006年   2868篇
  2005年   2358篇
  2004年   2102篇
  2003年   1691篇
  2002年   1435篇
  2001年   1174篇
  2000年   939篇
  1999年   834篇
  1998年   626篇
  1997年   410篇
  1996年   344篇
  1995年   316篇
  1994年   298篇
  1993年   275篇
  1992年   206篇
  1991年   128篇
  1990年   112篇
  1989年   89篇
  1988年   76篇
  1987年   45篇
  1986年   55篇
  1985年   55篇
  1984年   40篇
  1983年   24篇
  1982年   26篇
  1981年   16篇
  1980年   20篇
  1979年   7篇
  1978年   9篇
  1977年   27篇
  1971年   6篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
2.
The removal of native forest affects stream characteristics, processes, and organisms at the local scale. We compared the structure of fish assemblages between microbasins impacted by deforestation and those in pristine condition in the Amazonian Machado River basin, Brazil. Fish were collected with seine and dip nets along an 80-m stretch of 28 streams. At each site, we recorded physical, chemical, and land-water ecotone variables. We collected 6,586 specimens of 109 species, being 39 and 18 of them exclusively of forested and deforested streams, respectively. Non-significant differences were found for abundance and species richness between forested and deforested streams. A total of four main trophic groups were identified. Carnivores were more abundant in forested streams, whereas herbivores, omnivores and detritivores species were the most abundant in deforested streams. The deforested streams showed higher abundance and richness of algae and periphyton consumers, while forested streams presented higher abundance and richness of invertebrate consumers. Forested streams presented longer foodchains, higher occurrence and abundance of species that have more specialized habits and are intolerant to degraded environments, whereas generalist and tolerant species predominated in deforested streams. We conclude that species composition in Amazonian streams predictably responds to the degree of forest cover.  相似文献   
3.
Base flows are important for tropical regions with pronounced dry seasons, which are facing increasing water demands. Base flow generation, however, is one of the most challenging hydrological processes to characterize in the tropics. In many years during the May–December wet season in the Panama Canal Watershed (PCW), base flows in rivers abruptly increase. This increase persists until the start of the December–April dry season. Understanding this unusual base flow jump (BFJ) behaviour is critical to improve water provisioning in the seasonal tropics, especially during droughts and extended dry seasons. This study developed an integrated approach combining piecewise regression on cumulative average base flow and sensitivity analysis to calculate the timing and magnitude of BFJ. Rainfall, forest cover, mean land surface slope, catchment area, and estimated subsurface storage were tested as predictors for the occurrence and magnitude of the BFJs in seven subcatchments of the PCW. Sensitivity analysis on correlated predictors allowed ranking of predictor contributions due to isolated and cross-correlation effects. Correlations between observed BFJs and BFJs predicted by watershed and rainfall-related predictors were 0.92 and 0.65 for BFJ timing and magnitude, respectively. Forest cover was the second most significant predictor after cumulative rainfall for jump magnitude, owing to larger subsurface storage and groundwater recharge in forests than pastures. Catchments in the mountainous eastern PCW always generated larger jumps due to their higher rainfall and greater forest cover than the western PCW catchments. The cross-correlations between predictors contributed to more than 50% of the jump variances. The results demonstrate the importance of rainfall gradient and catchment characteristics in affecting the sudden and sustained BFJs, which can help inform land management decisions intended to enhance water supplies in the tropics. This study underscores the need for more research to further understand the hydrological processes involved in the BFJ phenomenon, including better BFJ models and field characterizations, to help improve tropical ecosystem services under a changing environment.  相似文献   
4.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
5.
Up-to-date forest inventory information relating the characteristics of managed and natural forests is fundamental to sustainable forest management and required to inform conservation of biodiversity and assess climate change impacts and mitigation opportunities. Strategic forest inventories are difficult to compile over large areas and are often quickly outdated or spatially incomplete as a function of their long production cycle. As a consequence, automated approaches supported by remotely sensed data are increasingly sought to provide exhaustive spatial coverage for a set of core attributes in a timely fashion. The objective of this study was to demonstrate the integration of current remotely-sensed data products and pre-existing jurisdictional inventory data to map four forest attributes of interest (stand age, dominant species, site index, and stem density) for a 55 Mha study region in British Columbia, Canada. First, via image segmentation, spectrally homogenous objects were derived from Landsat surface-reflectance pixel composites. Second, a suite of Landsat-based predictors (e.g., spectral indices, disturbance history, and forest structure) and ancillary variables (e.g., geographic, topographic, and climatic) were derived for these units and used to develop predictive models of target attributes. For the often difficult classification of dominant species, two modelling approaches were compared: (a) a global Random Forests model calibrated with training samples collected over the entire study area, and (b) an ensemble of local models, each calibrated with spatially constrained local samples. Accuracy assessment based upon independent validation samples revealed that the ensemble of local models was more accurate and efficient for species classification, achieving an overall accuracy of 72% for the species which dominate 80% of the forested areas in the province. Results indicated that site index had the highest agreement between predicted and reference (R2 = 0.74, %RMSE = 23.1%), followed by stand age (R2 = 0.62, %RMSE = 35.6%), and stem density (R2 = 0.33, %RMSE = 65.2%). Inventory attributes mapped at the image-derived unit level captured much finer details than traditional polygon-based inventory, yet can be readily reassembled into these larger units for strategic forest planning purposes. Based upon this work, we conclude that in a multi-source forest monitoring program, spatially localized and detailed characterizations enabled by time series of Landsat observations in conjunction with ancillary data can be used to support strategic inventory activities over large areas.  相似文献   
6.
Most studies have the achieved rapid and accurate determination of soil organic carbon (SOC) using laboratory spectroscopy; however, it remains difficult to map the spatial distribution of SOC. To predict and map SOC at a regional scale, we obtained fourteen hyperspectral images from the Gaofen-5 (GF-5) satellite and decomposed and reconstructed the original reflectance (OR) and the first derivative reflectance (FDR) using discrete wavelet transform (DWT) at different scales. At these different scales, as inputs, we selected the 3 optimal bands with the highest weight coefficient using principal component analysis and chose the normalized difference index (NDI), ratio index (RI) and difference index (DI) with the strongest correlation with the SOC content using a contour map method. These inputs were then used to build regional-scale SOC prediction models using random forest (RF), support vector machine (SVM) and back-propagation neural network (BPNN) algorithms. The results indicated that: 1) at a low decomposition scale, DWT can effectively eliminate the noise in satellite hyperspectral data, and the FDR combined with DWT can improve the SOC prediction accuracy significantly; 2) the method of selecting inputs using principal component analysis and a contour map can eliminate the redundancy of hyperspectral data while retaining the physical meaning of the inputs. For the model with the highest prediction accuracy, the inputs were all derived from the wavelength range of SOC variations; 3) the differences in prediction accuracy among the different prediction models are small; and 4) the SOC prediction accuracy using hyperspectral satellite data is greatly improved compared with that of previous SOC prediction studies using multispectral satellite data. This study provides a highly robust and accurate method for predicting and mapping regional SOC contents.  相似文献   
7.
为提高海岛测绘的技术手段,将无人机引入海岛地形调查中,以Swallow-P小型固定翼无人机开展惠州市大亚湾虎洲海岛大比例尺测图为例,系统归纳了无人机外业数据采集与内业数据处理的具体流程,并制作了DEM和DOM成果;经过实测地面点精度分析得出虎洲无人机大比例尺测图成果平面位置中误差和高程中误差符合1∶1000测图精度要求。  相似文献   
8.
面向数字孪生城市的智能化全息测绘   总被引:2,自引:0,他引:2  
以大数据、物联网、人工智能、虚拟现实、云计算、智能驾驶等新技术为代表的信息化浪潮席卷全球,数字世界与物理世界正形成两大平行发展、相互作用的体系,数字孪生技术应运而生。随着物联网技术(IOT)的发展,数字孪生的理念被引入到智慧城市建设中来,深刻影响着城市规划、建设与治理。笔者所在单位面向数字孪生城市和自然资源统一监管对测绘地理信息的新需求,在全国开创性地开展了面向数字孪生城市的智能化全息测绘试点工作。本文结合上海市智能化全息测绘试点工作,从数字孪生城市、数字孪生城市对地理信息的新需求、智能化全息测绘关键技术及测绘成果等方面展开了论述,重点介绍了智能化全息测绘的技术体系和产品体系,以及在社会各领域的应用成果。  相似文献   
9.
针对矢量空间数据叛逆者追踪难及编码效率低的问题,本文提出了一种运用GD-PBIBD码的指纹算法。首先运用GD-PBIBD构造指纹编码,将待嵌入指纹序列运用Logistic映射置乱,通过D-P算法提取矢量空间数据的特征点,对特征点实施DFT变换得到相位系数和幅度系数;然后运用QIM方法将指纹嵌入DFT变换域的幅度系数上;最后应用DFT逆变换得到含指纹的矢量空间数据。试验选取部分中国路网数据和某区域绿地数据,运用该算法嵌入指纹后,对其进行线性和非线性模拟攻击,成功提取指纹序列,利用汉明距离追踪出合谋者。该算法编码构造简单,在码长一定的情况下,较BIBD码可容纳更多的用户,效率高;算法抗单用户指纹攻击及多重攻击的稳健性较好,也能够抵抗多用户最小值和最大最小值攻击,追踪到所有叛逆者,可用于矢量空间数据版权保护,为矢量空间数据叛逆者追踪提供依据。  相似文献   
10.
浮动车轨迹数据具有覆盖范围广、更新周期短、获取成本低等特点,对于地图的生产和更新具有重要意义,但是由于受到卫星信号被遮挡及多路径效应的影响,其精度普遍较低。本文采用一种基于OSM作为参考数据的方式对浮动车轨迹数据进行校正。首先通过一种分层时空地图匹配的方式将轨迹数据与OSM进行匹配;然后采用引力模型对数据进行校正;最后在武汉市出租车轨迹数据上进行了试验。结果表明,本文提出的数据校正方法可以有效地提高浮动车轨迹数据的精度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号