首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   27篇
  国内免费   30篇
测绘学   127篇
大气科学   37篇
地球物理   18篇
地质学   33篇
海洋学   18篇
天文学   1篇
综合类   27篇
自然地理   14篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   14篇
  2019年   13篇
  2018年   8篇
  2017年   21篇
  2016年   20篇
  2015年   21篇
  2014年   22篇
  2013年   16篇
  2012年   14篇
  2011年   13篇
  2010年   10篇
  2009年   20篇
  2008年   14篇
  2007年   23篇
  2006年   14篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
1.
Information on tree species composition is crucial in forest management and can be obtained using remote sensing. While the topic has been addressed frequently over the last years, the remote sensing-based identification of tree species across wide and complex forest areas is still sparse in the literature. Our study presents a tree species classification of a large fraction of the Białowieża Forest in Poland covering 62 000 ha and being subject to diverse management regimes. Key objectives were to obtain an accurate tree species map and to examine if the prevalent management strategy influences the classification results. Tree species classification was conducted based on airborne hyperspectral HySpex data. We applied an iterative Support Vector Machine classification and obtained a thematic map of 7 individual tree species (birch, oak, hornbeam, lime, alder, pine, spruce) and an additional class containing other broadleaves. Generally, the more heterogeneous the area was, the more errors we observed in the classification results. Managed forests were classified more accurately than reserves. Our findings indicate that mapping dominant tree species with airborne hyperspectral data can be accomplished also over large areas and that forest management and its effects on forest structure has an influence on classification accuracies and should be actively considered when progressing towards operational mapping of tree species composition.  相似文献   
2.
When travelling, people are accustomed to taking and uploading photos on social media websites, which has led to the accumulation of huge numbers of geotagged photos. Combined with multisource information (e.g. weather, transportation, or textual information), these geotagged photos could help us in constructing user preference profiles at a high level of detail. Therefore, using these geotagged photos, we built a personalised recommendation system to provide attraction recommendations that match a user's preferences. Specifically, we retrieved a geotagged photo collection from the public API for Flickr (Flickr.com) and fetched a large amount of other contextual information to rebuild a user's travel history. We then created a model-based recommendation method with a two-stage architecture that consists of candidate generation (the matching process) and candidate ranking. In the matching process, we used a support vector machine model that was modified for multiclass classification to generate the candidate list. In addition, we used a gradient boosting regression tree to score each candidate and rerank the list. Finally, we evaluated our recommendation results with respect to accuracy and ranking ability. Compared with widely used memory-based methods, our proposed method performs significantly better in the cold-start situation and when mining ‘long-tail’ data.  相似文献   
3.
Data-based models, namely artificial neural network (ANN), support vector machine (SVM), genetic programming (GP) and extreme learning machine (ELM), were developed to approximate three-dimensional, density-dependent flow and transport processes in a coastal aquifer. A simulation model, SEAWAT, was used to generate data required for the training and testing of the data-based models. Statistical analysis of the simulation results obtained by the four models show that the data-based models could simulate the complex salt water intrusion process successfully. The selected models were also compared based on their computational ability, and the results show that the ELM is the fastest technique, taking just 0.5 s to simulate the dataset; however, the SVM is the most accurate, with a Nash-Sutcliffe efficiency (NSE) ≥ 0.95 and correlation coefficient R ≥ 0.92 for all the wells. The root mean square error (RMSE) for the SVM is also significantly less, ranging from 12.28 to 77.61 mg/L.  相似文献   
4.
提出一种分数阶傅里叶变换(fractional Fourier transformation, FrFT)与支持向量机(support vector machine, SVM)相结合的建筑物变形组合预测模型。首先利用FrFT对变形时间序列进行多尺度分析,将复杂时间序列分解为一系列结构较为简单的子序列;然后利用SVM对每个子序列分别建立预测模型,通过将各个子序列的预测结果进行综合叠加,得到最终预测结果;同时考虑到SVM模型参数选择的难题,提出一种改进果蝇优化算法(improved fruit fly optimization algorithm, IFOA)对其进行全局寻优,提升预测性能。以西南地区某混凝土坝变形实测数据为例开展验证实验,结果表明,本文组合预测模型能够充分挖掘数据中隐含的趋势性和规律性信息,获得较高的预测精度。  相似文献   
5.
6.
This study investigates urbanization and its potential environmental consequences in Shanghai and Stockholm metropolitan areas over two decades. Changes in land use/land cover are estimated from support vector machine classifications of Landsat mosaics with grey-level co-occurrence matrix features. Landscape metrics are used to investigate changes in landscape composition and configuration and to draw preliminary conclusions about environmental impacts. Speed and magnitude of urbanization is calculated by urbanization indices and the resulting impacts on the environment are quantified by ecosystem services. Growth of urban areas and urban green spaces occurred at the expense of cropland in both regions. Alongside a decrease in natural land cover, urban areas increased by approximately 120% in Shanghai, nearly ten times as much as in Stockholm, where the most significant land cover change was a 12% urban expansion that mostly replaced agricultural areas. From the landscape metrics results, it appears that fragmentation in both study regions occurred mainly due to the growth of high density built-up areas in previously more natural/agricultural environments, while the expansion of low density built-up areas was for the most part in conjunction with pre-existing patches. Urban growth resulted in ecosystem service value losses of approximately 445 million US dollars in Shanghai, mostly due to the decrease in natural coastal wetlands while in Stockholm the value of ecosystem services changed very little. Total urban growth in Shanghai was 1768 km2 and 100 km2 in Stockholm. The developed methodology is considered a straight-forward low-cost globally applicable approach to quantitatively and qualitatively evaluate urban growth patterns that could help to address spatial, economic and ecological questions in urban and regional planning.  相似文献   
7.
高光谱影像光谱-空间多特征加权概率融合分类   总被引:3,自引:3,他引:0  
提出了一种基于光谱-空间多特征加权概率融合的高光谱影像分类方法。首先,利用最小噪声分离(minimum noise fraction,MNF)方法对高光谱影像进行降维和特征提取,并以得到的MNF特征影像作为光谱特征,联合灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取的纹理特征、基于OFC算子建立的多尺度形态学特征以及采用连续最大角凸锥(sequential maximum angle convex cone,SMACC)提取的端元组分特征,组成3组光谱-空间特征;然后利用支持向量机(support vector machine,SVM)对每一组光谱-空间特征进行分类,得到每组特征的概率输出结果;最后,建立多特征加权概率融合模型,应用该模型将不同特征的概率输出结果进行加权融合,得到最终分类结果。为了验证该方法的有效性,利用ROSIS和 AVIRIS影像进行试验,总体分类精度分别达到97.65%和96.62%。结果表明本文的方法不但较好地克服了传统基于单一特征高光谱影像分类的局限性,而且其分类效果也优于常规矢量叠加(vector stacking,VS)和概率融合的多特征分类方法,有效地改善了高光谱影像的分类结果。  相似文献   
8.
The aim of this study was to assess the contribution of very high spatial resolution (VHSR) Pléiades images to both early season crop identification and the mapping of bare soil surface characteristics due to cultural operations. The study region covering 21 km2 is located west of the peri-urban territory of the Versailles plain and the Alluets plateau (Yvelines, France). About 100 cropped fields were observed on the ground synchronously with two Pléiades images of 3 and 24 April 2013 and one SPOT4 image of 2 April 2013. The GIS structuring of these field data along with vector information about field boundaries was used for delimitating both training and test zones for the support vector machine classifier with polynomial function kernel (pSVM). The pSVM was computed on the spectral bands and NDVI for both single-date Pléiades and the bi-temporal Pléiades pair. For the single-date classifications of crops, the overall per-pixel accuracy reached 87% for the SPOT4 image of 2 April (6 classes), 79% for the Pléiades image of 3 April (6 classes) and 82% for that of 24 April (7 classes). At the earlier date (2–3 April), the Pléiades image very well discriminated cultural operations (>77%, user’s or producer’s accuracies) as well as fallows and grasslands, while winter cereals and rapeseed were better discriminated by the SPOT4 image winter cereals (>70%, user’s or producer’s accuracies). As Pléiades images revealed within-field spatial variations of early phenological stages of winter cereals that could be critical for adjusting management of zones with delayed development during the growing season, they brought information complementary to multispectral images with high spatial resolution. For the bi-temporal Pléiades image, the overall per-pixel accuracy was about 80% (7 classes), winter crops, grasslands and fallows being very well detected while confusions occurred between spring barley at initial stages (2–3 leaves) and bare soils prepared for other spring crops. Using an additional validation field set covering ∼1/3 of the study area croplands, the crop map resulting from the bi-temporal Pléiades pair achieved correct crop prediction for about 89.7% of the validation fields when considering composite classes for winter cereals and for spring crops. Early-season Pléiades images therefore show a considerable potential for anticipating regional crop patterns and detecting soil tillage operations in spring.  相似文献   
9.
The Tibetan Plateau in Western China is the world’s largest alpine landscape, sheltering a rich diversity of native flora and fauna. In the past few decades, the Tibetan Plateau was found to suffer from grassland degradation processes. Grassland degradation is assumed to not only endanger biodiversity but also to increase the risk for natural hazards in other parts of the country which are ecologically and hydrologically connected to the area. However, the mechanisms behind the degradation processes remain poorly understood due to scarce baseline data and insufficient scientific research.We argue that remote sensing data can help to better understand degradation processes and patterns by: (1) identifying the distribution of severely degraded areas and (2) comparing the patterns of key spatial attributes of the identified areas (altitude above sea level, aspect, slope, administrative districts) with existing theories on degradation drivers. Therefore, we applied four Landsat 8 images covering large portions of the three counties Jigzhi, Baima and Darlag in the Eastern Tibetan Plateau. The dates of the Landsat scenes were selected to cover differing phenological stages of the ecosystem. Reference data were collected with a remotely piloted aircraft and a standard consumer RGB camera. To exploit the phenological information in the Landsat data as well as deal with the problem of cloud cover in multiple images, we developed a straightforward PCA-based procedure to merge the Landsat scenes. The merged Landsat data served as input to a supervised support vector machine classification which was validated with an iterative bootstrap procedure and an additional independent validation set. The considered classes were “high-cover grassland”, “grassland (including several stages of grassland vitality)”, “(severely) degraded grassland”, “green shrubland”, “grey shrubland”, “urban areas” and “water bodies”. Kappa accuracies ranged between 0.84 and 0.93 in the iterative procedure, while the independent validation led to a kappa accuracy of 0.76. Mean producer’s and user’s accuracies for all classes were higher than 80%, and confusion mainly occurred between the two shrubland classes and between the three grassland classes.Analysis of the slope, aspect and altitude values of the vegetation classes revealed that the degraded areas mostly occurred at the higher altitudes of the study area (4300–4600 m), with no strong connection to any specific slope or aspect. High-cover grassland was mostly located on sunny slopes at lower altitudes (less than 4300 m), while shrubland preferred shady, relatively steep slopes across all altitudes. These observations proved to be stable across the examined counties, while the proportions of land-cover classes differed between the examined regions. Most counties showed 5–7% severely degraded land cover. Darlag, the county located at the edge of the permafrost zone, and featuring the highest average altitude and lowest annual temperature and precipitation, was found to suffer from larger areas of severe degradation (14%).Therefore, our findings support a strong connection between degradation patterns and climatic as well as altitudinal gradients, with an increased degradation risk for high altitude areas and areas in colder and drier climatic zones. This is relevant information for pastoral management to avoid further degradation of high altitude pastures.  相似文献   
10.
由于大坝位移时间序列数据受各种复杂因素的影响,具有非平稳和非线性等特征,因此,利用传统、单一的时间序列预测模型较难准确地描述大坝位移变形的复杂规律。综合考虑大坝位移时间序列非线性和线性特征,本文提出了一种SVM和ARIMA相结合的时间序列预测模型。将大坝变形的时间序列分为非线性部分和线性部分。针对非线性部分,利用SVM进行滚动预测,并与NAR动态神经网络进行对比,试验表明SVM处理非线性问题具有相对的优势;针对线性部分,通过ARIMA模型对其进行单步滚动预测,综合两项预测结果得到组合模型的预测值。结合大坝实测资料对组合模型进行检验,试验结果表明,SVM-ARIMA组合模型的预测精度高,能更好地描述大坝位移的变化趋势,具有一定的实用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号