首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
大气科学   2篇
地球物理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
本文利用全球陆面数据同化系统与降雨观测数据,以陕西半湿润区陈河流域为研究对象,驱动WRF-Hydro模型,研究该模型的表现和适用性,并在结构、参数、输入输出和模拟结果方面与新安江模型对比.考虑到次表面层与实际包气带的区别,引入土层厚度乘子ZSOILFAC对前者进行等比缩放,发现其与新安江模型反推包气带的厚度有较好的一致性.研究表明:在陈河流域中WRF-Hydro计算步长须在建议值的基础上缩小; WRF-Hydro模型善于模拟洪水细节,新安江模型表现好且稳定;前者的径流深和洪峰合格率平于或略低于后者;在两个指标均合格的洪水中,前者平均均方根误差比后者小21.5%,但对于其他洪水,前者平均均方根误差比后者大56.2%; WRF-Hydro在洪水起涨时刻模拟较好,表现出其在中小流域应用的潜力.  相似文献   
2.
Meteo-hydrological forecasting models are an effective way to generate high-resolution gridded rainfall data for water source research and flood forecast. The quality of rainfall data in terms of both intensity and distribution is very important for establishing a reliable meteo-hydrological forecasting model. To improve the accuracy of rainfall data, the successive correction method is introduced to correct the bias of rainfall, and a meteo-hydrological forecasting model based on WRF and WRF-Hydro is applied for streamflow forecast over the Zhanghe River catchment in China. The performance of WRF rainfall is compared with the China Meteorological Administration Multi-source Precipitation Analysis System (CMPAS), and the simulated streamflow from the model is further studied. It shows that the corrected WRF rainfall is more similar to the CMPAS in both temporal and spatial distribution than the original WRF rainfall. By contrast, the statistical metrics of the corrected WRF rainfall are better. When the corrected WRF rainfall is used to drive the WRF-Hydro model, the simulated streamflow of most events is significantly improved in both hydrographs and volume than that of using the original WRF rainfall. Among the studied events, the largest improvement of the NSE is from -0.68 to 0.67. It proves that correcting the bias of WRF rainfall with the successive correction method can greatly improve the performance of streamflow forecast. In general, the WRF / WRF-Hydro meteo-hydrological forecasting model based on the successive correction method has the potential to provide better streamflow forecast in the Zhanghe River catchment.  相似文献   
3.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   
4.
以漳河流域为研究区域,以CMORPH卫星-地面自动站-雷达三源降水融合数据和ERA5再分析降水资料为WRF-Hydro模式的输入,进行径流模拟,对比分析模拟径流与实测径流的差异,探讨基于两种降水数据的WRF-Hydro模式在漳河流域的径流模拟效果。结果表明:三源降水融合数据的径流模拟效果较优,纳什系数均达到0.7以上,模拟径流与实测径流过程吻合较好;采用三源降水融合数据和ERA5再分析降水资料率定WRF-Hydro模式,以ERA5再分析降水资料为输入,径流模拟结果都不佳;总体而言,三源降水融合数据与WRF-Hydro模式耦合能够较好地模拟漳河流域径流过程。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号