首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   78篇
  国内免费   78篇
测绘学   35篇
大气科学   14篇
地球物理   143篇
地质学   190篇
海洋学   52篇
天文学   8篇
综合类   12篇
自然地理   31篇
  2024年   1篇
  2023年   3篇
  2022年   16篇
  2021年   15篇
  2020年   20篇
  2019年   11篇
  2018年   14篇
  2017年   18篇
  2016年   15篇
  2015年   11篇
  2014年   24篇
  2013年   22篇
  2012年   30篇
  2011年   23篇
  2010年   19篇
  2009年   31篇
  2008年   24篇
  2007年   30篇
  2006年   19篇
  2005年   22篇
  2004年   19篇
  2003年   15篇
  2002年   11篇
  2001年   14篇
  2000年   6篇
  1999年   4篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1985年   1篇
排序方式: 共有485条查询结果,搜索用时 15 毫秒
1.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
2.
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach.  相似文献   
3.
Many strong motion records show that under the strong seismic vibration of, the torsional disfigurement of building structures is a common and serious damage. At present, there are no special sensors for measuring seismic rotation in the world. Most of the experts obtain rotational components through observing deformation, theoretical analysis and calculation. The theory of elastic wave and source dynamics also prove the conclusion that the surface of the earth will rotate when an earthquake occurs. Based on a large number of investigations and experiments, a rotational acceleration sensor was developed for the observation of the rotational component of strong ground motions. This acceleration sensor is a double-pendulum passive servo large-damped seismic rotational acceleration sensor with the moving coil transducer. When an earthquake occurs, the seismic rotational acceleration acts on the bottom plate at the same time. The magnetic circuit system and the middle shaft fixedly connected to the bottom plate follow the bottom plate synchronous vibration, and the moving part composed of the mass ring, the swing frame and the moving ring produces relative corners to the central axis. The two working coils mounted on the two pendulums produce the same relative motion with respect to the magnetic gaps of the two magnetic circuits. Both working coils at this time generate an induced electromotive force by cutting magnetic lines of force in the respective magnetic gaps. The generated electromotive forces are respectively input to respective passive servo large damper dynamic ring transducer circuits and angular acceleration adjusting circuits, and the signals are simultaneously input to the synthesizing circuit after conditioning. Finally, the composite circuit outputs a voltage signal proportional to the seismic rotational acceleration to form a seismic rotational acceleration sensor. The paper presents the basic principles of the rotational acceleration sensor, including its mechanical structure diagram, circuit schematic diagram and mathematical models. The differential equation of motion and its circuit equation are derived to obtain the expressions of the main technical specifications, such as the damping ratio and sensitivity. The calculation shows that when the damping ratio is much larger than 1, the output voltage of the passive servo large damping dynamic coil transducer circuit is proportional to the ground rotation acceleration, and the frequency characteristic of bandpass is wider when the damping ratio is larger. Based on the calibration test, the dynamic range is greater than or equal to 100dB and the linearity error is less than 0.05%. The amplitude-frequency characteristics, the phase-frequency characteristics and their corresponding curves of the passive servo rotational acceleration sensor are acquired through the calculations. Based on the accurate measurement of the micro-vibration of the precision rotating vibration equipment, the desired result is obtained. The measured data are presented in the paper, which verify the correctness of the calculation result. The passive servo large damping rotational acceleration sensor has simple circuit design, convenient operation and high resolution, and can be widely applied to seismic acceleration measurement of earthquake or structure.  相似文献   
4.
刘金平  张万昌  邓财  聂宁 《冰川冻土》2018,40(4):643-654
利用2000-2014年MODIS逐日无云积雪产品对雅鲁藏布江流域积雪特征的空间分布及变化、积雪随高程变化的规律进行了分析,并采用被动微波数据SMMR (1979-1987年)和SSM/I (1988-2008年)以及中国地面降水和气温0.5°×0.5°日值格点数据集,研究了雅鲁藏布江流域关键积雪参数对气候要素的响应等。结果表明:流域下游积雪日较大且变化剧烈;流域整体上呈显著减少的趋势;积雪日随高程的上升而增加;流域内降水呈不显著的增加趋势,而气温呈显著的增加趋势,最高气温对积雪变化影响最大;气温对积雪终日的影响明显高于积雪初日;在积雪消融期降水的增多促进了积雪的消融。  相似文献   
5.
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.  相似文献   
6.
In downhole microseismic monitoring, accurate event location relies on the accuracy of the velocity model. The model can be estimated along with event locations. Anisotropic models are important to get accurate event locations. Taking anisotropy into account makes it possible to use additional data – two S-wave arrivals generated due to shear-wave splitting. However, anisotropic ray tracing requires iterative procedures for computing group velocities, which may become unstable around caustics. As a result, anisotropic kinematic inversion may become time consuming. In this paper, we explore the idea of using simplified ray tracing to locate events and estimate medium parameters. In the simplified ray-tracing algorithm, the group velocity is assumed to be equal to phase velocity in both magnitude and direction. This assumption makes the ray-tracing algorithm five times faster compared to ray tracing based on exact equations. We present a set of tests showing that given perforation-shot data, one can use inversion based on simplified ray-tracing even for moderate-to-strong anisotropic models. When there are no perforation shots, event-location errors may become too large for moderately anisotropic media.  相似文献   
7.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
8.
为了更有效地将卫星数据应用于北极航行导航,被动微波(PM)产品的海冰密集度(SIC)与从中国北极科学考察中收集到的船基目视观测(OBS)资料进行了比较。在2010、2012、2014、2016和2018年的北极夏季总共收集了3667组目测数据。PM SIC取自基于SSMIS传感器的NASA-Team(NT)、Bootstrap(BT)以及Climate Data Record(CDR)算法和基于AMSR-E/AMSR-2传感器的BT、enhanced NT(NT2)以及ARTIST Sea Ice(ASI)算法。使用PM SIC的日算术平均值和OBS SIC的日加权平均值进行比较。比较了PM SIC和OBS SIC之间的相关系数,偏差和均方根偏差,包括总体趋势以及在轻度/普通/严重冰况下的情况。使用OBS数据,浮冰尺寸和冰厚对不同PM产品SIC反演的影响可以通过计算浮冰尺寸编码和冰厚的日加权平均值来评估。我们的结果显示相关系数的范围为0.89(AMSR-E/AMSR-2 NT2)到0.95(SSMIS NT),偏差的范围为-3.96%(SSMIS NT)到12.05%(AMSR-E/AMSR-2),均方根偏差的范围为10.81%(SSMIS NT)到20.15%(AMSR-E/AMSR-2 NT2)。浮冰尺寸对PM产品的SIC反演有显著的影响,大多数PM产品倾向于在小浮冰尺寸情况下低估SIC,而在大浮冰尺寸情况下高估SIC。超过30 cm的冰厚对于PM产品的SIC反演没有明显影响。总体来看,在北极夏季,SSMIS NT SIC与OBS SIC之间有着最好的一致性,而AMSR-E/AMSR-2 NT2 SIC与OBS SIC的一致性最差。  相似文献   
9.
In this study, sea surface salinity(SSS) Level 3(L3) daily product derived from soil moisture active passive(SMAP)during the year 2016, was validated and compared with SSS daily products derived from soil Moisture and ocean salinity(SMOS) and in-situ measurements. Generally, the root mean square error(RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the sea surface temperature(SST). Then, a regression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.  相似文献   
10.
U-Pb dating of detrital zircons from the sandstones of the Mamakan Formation has been made. Geochemical and isotope parameters of the carbonate deposits of the Yanguda Formation in the Vendian-Cambrian cover of the North Muya continental block have been estimated. It has been established that only the Neoproterozoic (630-915 Ma) rocks of the North Muya block were the provenances of terrigenous material. In the least altered carbonate rocks of the Yanguda Formation, the 87Sr/86Sr ratio is within 0.70814-0.70879 and δ13C varies from -0.4 to + 1.9‰. Comparison of the evaluated isotope parameters with those of carbonate rocks of typical Vendian-Cambrian sections shows that the carbonate deposits of the Yanguda Formation accumulated in the Early Cambrian, about 520 Ma. Sedimentation of the Mamakan and Yanguda Formations took place in the local sedimentary basin in the Vendian-Early Cambrian, in the absence of tectonic activity within the North Muya block. Detrital material that formed during the destruction of the rocks of the Siberian Platform basement and cover was not supplied into the basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号