首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1079篇
  免费   243篇
  国内免费   160篇
测绘学   192篇
大气科学   139篇
地球物理   493篇
地质学   349篇
海洋学   101篇
天文学   5篇
综合类   53篇
自然地理   150篇
  2024年   3篇
  2023年   12篇
  2022年   25篇
  2021年   28篇
  2020年   60篇
  2019年   62篇
  2018年   63篇
  2017年   73篇
  2016年   73篇
  2015年   63篇
  2014年   72篇
  2013年   164篇
  2012年   77篇
  2011年   69篇
  2010年   59篇
  2009年   57篇
  2008年   64篇
  2007年   96篇
  2006年   74篇
  2005年   49篇
  2004年   44篇
  2003年   22篇
  2002年   31篇
  2001年   15篇
  2000年   18篇
  1999年   15篇
  1998年   16篇
  1997年   16篇
  1996年   10篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   3篇
  1991年   9篇
  1990年   7篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有1482条查询结果,搜索用时 18 毫秒
1.
Average velocity in streams is a key variable for the analysis and modelling of hydrological and hydraulic processes underpinning water resources science and practice. The present study evaluates the impact of the sampling duration on the quality of average velocity measurements acquired with contemporary instruments such as Acoustic Doppler Velocimeters (ADV) an Acoustic Doppler Current Profilers (ADCP). The evaluation combines considerations on turbulent flows and principles and configurations of acoustic instruments with practical experience in conducting customized analysis for uncertainty analysis purposes. The study sheds new insights on the spatial and temporal variability of the uncertainty in the measurement of average velocities due to variable sampling durations acting in isolation from other sources of uncertainties. Sampling durations of 90 and 150 s are found sufficient for ADV and ADCP, respectively, to obtain reliable average velocities in a flow affected only by natural turbulence and instrument noise. Larger sampling durations are needed for measurements in most of the natural streams exposed to additional sources of data variability.  相似文献   
2.
易损性分析是隧道工程领域防震减灾研究的重要方法。首先,详细综述了国内外隧道地震易损性研究历史与现状;其次,归纳了国内外隧道地震易损性分析主要方法,并总结了各种方法的实际适用性;接着,提出了隧道地震易损性评估步骤,并且讨论了以数值模拟为主要手段的理论易损性曲线建立中的3个关键内容:(1)输入参数确定;(2)破坏状态分级;(3)相关不确定性参数计算;最后,指出该领域一些亟待解决的问题和未来研究发展的方向。结果表明:隧道地震易损性分析能通过考虑相关不确定性因素,反映了隧道在地震荷载作用下的性能,有利于未来的风险评估和损失估算,对基于性能的隧道抗震设计的发展具有重要意义。  相似文献   
3.
This paper presents a methodology to evaluate the seismic reliability of geostructures in an optimal way. Taguchi design of experiments are adopted to find the most efficient and cost-effective combination of material properties in the uncertainty domain. Twelve uniform and mixed design models are tested. A polynomial-based response surface meta-model is built for each one and the accuracy of perdition is examined using 10,000 Monte Carlo simulations. A two-dimensional gravity dam is used as a vehicle for probabilistic transient analyses. The ground motion record-to-record variability is added as well using over one hundred earthquake records selected based on probabilistic seismic hazard analysis. Dynamic sensitivity of epistemic random variables are evaluated for the first time. Finally, an efficient and practical procedure is proposed in order to determine the reliability index of the geostructures. This approach, in fact, can be generalised for any type of engineering structures dealing with multi-hazard problems.  相似文献   
4.
This study aimed to map water features using a Landsat image rather than traditional land cover. We involved the original bands, spectral indices and principal components (PCs) of a principal component analysis (PCA) as input data, and performed random forest (RF) and support vector machine (SVM) classification with water, saturated soil and non-water categories. The aim was to compare the efficiency of the results based on various input data. Original bands provided 93% overall accuracy (OA) and bands 4–5–7 were the most informative in this analysis. Except for MNDWI (modified normalized differenced water index, with 98% OA), the performance of all water indices was between 60 and 70% (OA). The PCA-based approach conducted on the original bands resulted in the most accurate identification of all classes (with only 1% error in the case of water bodies). We therefore show that both water bodies and saturated soils can be identified successfully using this approach.  相似文献   
5.
刘航 《地震工程学报》2018,40(5):1118-1123
由于地震灾害的不确定性,使得应急救援设备运行速率及使用效率均受到影响,需要进行并行优化处理。对此,提出基于双向并行计算的地震灾害应急救援设备优化方法。以地震灾区灾情等级评估结果为基础,将地震等级及应急救援设备,设备及设备之间的关系进行标准化处理,转化为求解最优解问题;在考虑不确定性的情况下,通过通信时间与救援设备需求进行双向并行处理,优化地震灾害应急救援设备。实验结果表明,采用改进方法进行地震灾害应急救援设备并行优化,能够对地震灾害应急救援设备需求量进行准确预测,提高应急救援设备的运行速率,缩短通信时间,提高应急救援设备的使用效率,具有一定的优势。  相似文献   
6.
We assess the effects of prospective climate change until 2100 on water management of two major reservoirs of Iran, namely, Dez (3.34 × 109 m3) and Alavian (6 × 107 m3). We tune the Poly‐Hydro model suited for simulation of hydrological cycle in high altitude snow‐fed catchments. We assess optimal operation rules (ORs) for the reservoirs using three algorithms under dynamic and static operation and linear and non‐linear decision rules during control run (1990–2010 for Dez and 2000–2010 for Alavian). We use projected climate scenarios (plus statistical downscaling) from three general circulation models, EC‐Earth, CCSM4, and ECHAM6, and three emission scenarios, or representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, for a grand total of nine scenarios, to mimic evolution of the hydrological cycle under future climate until 2100. We subsequently test the ORs under the future hydrological scenarios (at half century and end of century) and the need for reoptimization. Poly‐Hydro model when benchmarked against historical data well mimics the hydrological budget of both catchments, including the main processes of evapotranspiration and streamflows. Teaching–learning‐based optimization delivers the best performance in both reservoirs according to objective scores and is used for future operation. Our projections in Dez catchment depict decreased precipitation along the XXI century, with ?1% on average (of the nine scenarios) at half century and ?6% at the end of century, with changes in streamflows on average ?7% yearly and ?13% yearly, respectively. In Alavian, precipitation would decrease by ?10% on average at half century and ?13% at the end of century, with streamflows ?14% yearly and ?18% yearly, respectively. Under the projected future hydrology, reservoirs' operation would provide lower performance (i.e., larger lack of water) than now, especially for Alavian dam. Our results provide evidence of potentially decreasing water availability and less effective water management in water stressed areas like Northern Iran here during this century.  相似文献   
7.
为提高基于F-范数的不确定性平差模型的解算效率,给出直接迭代算法进行参数估计。该算法无需SVD,解算过程简单且易于编程计算,同时给出迭代不收敛时的SVD-解方程算法。二元线性拟合及沉降观测AR模型的算例结果表明,这2种算法正确可行,与SVD-迭代算法具有等价性。当迭代收敛时,宜使用直接迭代算法,收敛速度更快,解算效率更高;当迭代不收敛时,可釆用SVD-解方程算法。  相似文献   
8.
River discharge and nutrient measurements are subject to aleatory and epistemic uncertainties. In this study, we present a novel method for estimating these uncertainties in colocated discharge and phosphorus (P) measurements. The “voting point”‐based method constrains the derived stage‐discharge rating curve both on the fit to available gaugings and to the catchment water balance. This helps reduce the uncertainty beyond the range of available gaugings and during out of bank situations. In the example presented here, for the top 5% of flows, uncertainties are shown to be 139% using a traditional power law fit, compared with 40% when using our updated “voting point” method. Furthermore, the method is extended to in situ and lab analysed nutrient concentration data pairings, with lower uncertainties (81%) shown for high concentrations (top 5%) than when a traditional regression is applied (102%). Overall, for both discharge and nutrient data, the method presented goes some way to accounting for epistemic uncertainties associated with nonstationary physical characteristics of the monitoring site.  相似文献   
9.
李明  张韧  洪梅 《海洋通报》2018,(2):121-128
全球气候变化背景下,海洋灾害的群发性、难以预见性和灾害链效应日显突出,造成的损失逐年上升,开展海洋灾害的风险评估工作至关重要。针对海洋灾害评估中的不确定问题,本文首先基于风险理论剖析了海洋灾害风险的不确定性特征,构建了灾害评估指标体系;然后基于贝叶斯网络模型,提出针对不确定性灾害评估的风险贝叶斯网络,进而基于主客观定权,构建了加权贝叶斯网络评估模型;最后对我国沿海地区海洋灾害开展评估研究。实验表明,该评估模型有效实现海洋灾害的风险评估,具有实际可操作性。  相似文献   
10.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号