首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
大气科学   5篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
利用毕节市1980—2016年月降水资料,分析毕节6月降水特征、周期性、降水与环流指数的相关性以及异常年份大气环流特征,得出结果:近37a中毕节6月降水量出现8次异常,其中6月降水在1993年和2003年出现两次降水突变,小波分析发现降水序列存在2—3a,6—7a的周期变化,在2002年左右振荡幅度最为明显;降水异常年西太副高特征指数的副高北界指数及副高脊线指数和降水有显著相关性,其余特征指数相关性差;降水偏多年南亚高压位置偏西,500hPa上高纬地区冷空气较强,经向环流明显,有利于南北空气交汇,在贵州西北部多切变辐合;降水偏少年南亚高压位置偏东,强度强,经向环流弱,副热带高压较平均场偏弱明显。  相似文献   
2.
利用1981-2017年10月至次年4月贵州省共84个自动站雨凇观测资料,采用线性趋势分析、统计分析等方法研究贵州省冻雨气候特征,并结合2018年1月底的一次冻雨天气过程对冻雨的发生、发展和形成机制进行研究,结果表明:贵州省冻雨天气月变化趋势呈抛物线分布,1月冻雨发生频率最高,各地冻雨总体呈现中西部出现时间早,结束时间晚,东、南部出现时间晚,结束时间早的现象;贵州省的中部一线为冻雨的高发中心,冻雨持续时间长;而东北部及南部冻雨出现频率较低。2018年1月底的一次冻雨天气过程长时间维持主要是由于阻塞高压、横槽转竖、东亚极涡共同影响,强冷空气多次补充及准静止锋西推导致。  相似文献   
3.
姚浪  吴姗  周庶  王璇  谯勋 《陕西气象》2020,(4):15-20
2008年年初、2011年年初毕节市均出现持续时间超过1个月的低温雨雪天气,利用毕节市8个气象观测站2008年1月13日—2月14日、2010年12月30日—2011年1月31日地面观测资料,贵阳、威宁探空观测资料,NCEP 2.5°×2.5°再分析资料,对比分析两次天气过程发现:2008年过程以冻雨天气为主,毕节平均冻雨日数达27 d,且过程中无明显升温天气;2011年过程雨雪交替出现,地面凝冻时间较2008年少。分析500 hPa环流特征发现2011年过程高压脊强度更强,高空冷涡较2008年更深厚;2008年过程在青藏高原西北侧南风更强,2011年过程偏北气流中心较2008年偏西、偏南,南北风分界线较2008年偏南明显。两次过程中云贵准静止锋面的摆动和位置对毕节降水相态变化有直接影响,频繁摆动的锋面是毕节降雪的有利条件,当冷空气强度较大或静止锋减弱后毕节常出现冻雨或雨夹雪天气。分析垂直层结发现两次过程中绝对水汽含量相当,但上升运动伸展高度差异明显,2008年过程上升运动高度集中在700 hPa附近,而2011年过程中上升运动伸展高度较2008年更高,上升运动达600 hPa以上的持续时间更长,这直接导致两次过程天气现象特点的差异。  相似文献   
4.
高原低涡是夏季青藏高原(简称高原)及其下游地区的主要降水系统。本文利用ERA5逐小时再分析资料、FY-2E卫星云顶亮温逐小时数据和TRMM 3 h降水资料,对2013年7月19~21日活动于高原的一次低涡过程进行了诊断分析。此低涡在高原期间的活动时间长达56 h,将其分为初生、发展及移出高原前三个阶段,着重分析了高原大气热源在低涡不同阶段的关键作用和机理。结果表明:此低涡在发展过程中表现为阶段性增强的特征,位势涡度倾向方程诊断发现非绝热加热的垂直梯度是造成低涡发展增强的主要因素,即非绝热加热极值所在高度的下方和上方分别有正的和负的位涡制造,从而加强了低层的气旋和高层的反气旋。进一步分析可知大气热源在低涡发展过程中也表现出阶段性增强的特征,最大值出现在正午时段,且在低涡移出高原前阶段最强。低涡的生成与地面暖中心有关,这归因于地表感热加热的作用;而低涡的后续发展则主要依赖于凝结潜热加热,加热高度位于对流层中层,这主要是由垂直运动将低层的水汽集中到中层,产生水汽凝结所致。  相似文献   
5.
高原低涡是青藏高原(简称高原)的主要降水系统,其移出高原后,往往会在高原下游地区造成大到暴雨甚至大暴雨。低涡移出高原后的移动方向主要有东移、东北移等。本文基于1979—2018年高原低涡数据库,选取初夏(6月)东北移低涡为研究对象,依据其移出位置,将其分为偏西型低涡(简称Ⅰ类低涡)和偏东型低涡(简称Ⅱ类低涡),对两类东北移低涡的源地、结构、环流及其对降水的影响等方面进行了统计分析,并与东移低涡进行了对比。结果表明:东北移低涡源地较东移低涡偏北,Ⅰ类低涡主要生成于高原西北部,而Ⅱ类低涡存在3个主要源地。移出高原后,Ⅰ类低涡最大上升运动主要出现在低涡东北侧,而Ⅱ类低涡同东移低涡相似,上升区主要位于低涡东南侧。低涡在高原上的移动方向及移出位置主要受到200 hPa中纬度引导气流的影响,移出高原后的移动方向则主要受500 hPa高原以东槽脊的影响,其中河套高压脊对东北移低涡的阻挡作用尤为重要。低涡移动速度受海拔高度差和移动方向的共同影响,移出高原前Ⅱ类低涡与东移低涡移动速度明显快于Ⅰ类低涡;移出高原后两类东北移低涡平均移动速度较东移低涡更慢。Ⅰ类低涡移出后主要影响河西走廊地区,且降水以小雨为主...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号