排序方式: 共有61条查询结果,搜索用时 93 毫秒
1.
分析了2002年9月27日发生在山东东阿附近一次冰雹风暴发生、发展各阶段新一代天气雷达CINRAD/SA反射率、平均径向速度等产品的演变过程。在风暴中, 观测到了低层前侧入流缺口、有界弱回波区 (BWER)、中气旋 (M) 等超级单体风暴的特征。中气旋在风暴中维持了约90 min, 通过连续时次各仰角高度风暴相对速度产品的分析, 揭示了中气旋发生、发展和消亡的过程。分析表明风暴跟踪信息 (STI)、冰雹指数 (HI)、垂直积分液态含水量 (VIL)、中气旋 (M) 等产品对冰雹有较好的识别和预报能力。 相似文献
2.
冰雹风暴中的流场结构及大冰雹生成区 总被引:23,自引:2,他引:21
采用对风暴每6min一次CINRAD/SA的立体扫描资料,分析了新一代天气雷达探测到的几次冰雹云的空间结构。结果表明,风暴中存在中尺度气旋,中尺度气旋低层气旋性辐合、中低层纯气旋性旋转、中上层气旋性辐散、高层辐散。在中高层气旋的右后侧紧挨着有一个反中气旋伴随。中气旋与反中气旋形成了一个“8”型流场和“S”型的强回波区。在中层到中高层,“S”型强回波区有利于形成“穴道”,而在“S”的两个拐弯处的内侧,水平速度更小,更易形成“穴道”,成为大冰雹生成区。 相似文献
3.
VIL和VIL密度在冰雹云判据中的应用 总被引:17,自引:8,他引:9
利用2002—2005年济南CINRAD/SA雷达资料,统计分析了基于网格的对流云的垂直累积液态含水量(VIL)分布特征,同时对VIL密度(VILD)及0℃层以上的VIL值(VILH)也进行了分析,结果表明,冰雹云和非降雹对流云的VIL、VILD和VILH值有明显差异。降雹单体特别是强降雹单体在成熟前期有明显的VIL跃增现象,强降雹单体的VIL跃增量达15.4 kg.m-2。冰雹云的最大VIL、VILD和VILH平均值比非降雹对流云的最大平均值分别高出20 kg.m-2、1.7 g.m-3和16 kg.m-2。不同月份的VIL、VILD、VILH阈值对冰雹特别是大冰雹的识别具有很好的指示意义。基本上是在VIL达到最大值后开始降雹,5~7月3个月降雹单体的降雹时间分别滞后于VIL跃增后的体扫时间约4.8、11.4和12.3 min。 相似文献
4.
5.
6.
一次长寿命风暴的CINRAD/SA雷达反射率及中气旋产品特征与流场结构分析 总被引:10,自引:8,他引:2
利用济南观测站的探空、涡度、地面资料和CINRAD/SA雷达产品,对2004年6月24日发生在山东西部地区的强风暴过程进行了分析。结果表明,风暴低层存在中尺度辐合现象,风暴前侧的入流依靠后部低层冷空气池的向前推进而得到支撑,产生逆环境风切变方向的主上升气流区;中层为双涡旋结构,这种深厚的内部涡旋结构可与环境风相持,形成近似刚体的风暴柱,环境风绕风暴而过,不会吹穿风暴,有利于风暴长时间维持;风暴成熟阶段表现为超级单体结构特征并伴有中气旋;三体散射(TBSS)出现在中高层,TBSS出现10~15 min后地面出现大冰雹,TBSS消失后维持10~20 min的降雹。 相似文献
7.
2002年9月27日、2003年6月28日和2004年6月24日山东部分地区遭受了不同程度的灾害性天气,雷达观测分析表明是3次超级单体风暴所致,0927风暴尺度和天气现象次于0628和0624风暴.利用济南多普勒雷达探测资料,结合天气形势,对这3次典型超级单体强度结构、流场结构及其演变过程进行了仔细的分析,结果表明:地面中尺度辐合触发了不稳定能量的释放,引发了强对流天气发生;风暴形成阶段表现为不同的演变特征,0927风暴表现为多单体传播型,0628风暴表现为单体自身发展型,0624风暴表现为群发单体合并型;移动路径相似,都属于右移风暴,偏离风暴承载层平均风右侧30°-70°,移动速度约为风暴承载层平均风速的45%-70%;发展成熟阶段最大强中心高度表现不同,0927风暴位于单体底部,0628风暴位于单体中下层,0624风暴位于单体中层以上,最大反射率因子和垂直积分液态含水量(VIL)表现也有差别,0624风暴最强,0628风暴次之,0927风暴相对较弱.风暴旺盛成熟阶段表现为典型的超级单体特征,有界弱回波区(BWER)和中气旋;风暴旺盛成熟阶段风暴垂直流场结构有相似性,低层气旋性辐合,中层近似于气旋性旋转上升,高层气流辐散;中层水平流场结构存在较大差异,0927和0624.风暴为双涡管式旋转结构,0628风暴为单涡式的气旋旋转结构. 相似文献
8.
利用济南、徐州和临沂多普勒天气雷达资料,对发生在山东境内的3次下击暴流进行了分析.2009年6月27日和2006年7月25日强风暴不仅产生了尺度大于4 km的宏下击暴流,而且还产生了冰雹和强降水天气,风暴最大反射率因子维持在60 dBz以上,单体VIL在45~70kg·m-2之间.2009年7月8日对流风暴只产生了尺度小于2 km的微下击暴流,风暴最大反射率因子维持在55~59 dBz,高度在10 km以上,单体VIL在30~48kg·m2之间.结果表明,三次风暴中层为明显的气旋性旋转上升气流结构,利于风暴发展和维持,近地层基本速度产品上表现为纯辐散或反气旋性辐散结构;反射率因子强核高度或风暴顶高度从高空的快速下降,使得风暴中层下沉气流加强,从而引发了地面下击暴流.低层和中层环境风切变及CAPE的大小决定风暴下击暴流的强弱,近地层径向速度极值超过28 m·s1,可在地面产生25 m·s-1以上的瞬时强风. 相似文献
9.
分析了2006年4月28日发生在临沂的罕见灾害性大风的多普勒天气雷达产品.分析发现,雷达回波具有典型的弓状回波特征,在弓状回波前沿,对流单体强烈发展,出现有界弱回波区,低层入流缺口等超级单体的典型特征,风暴中出现中气旋,强降水之后风暴回波顶高、风暴质心高度、风暴的最大反射率因子高度迅速下降,灾害性大风出现在这个时段.实地考察表明,灾害性大风的路径与中气旋最大风速圈南缘移过的路径一致.分析认为,弓状回波后部存在较强后部下沉入流,由于强降水的拖曳作用,将中层中气旋的水平动量带到地面,中气旋右侧动量的方向与弓状回波后部的强下沉入流方向一致,两者叠加,使地面风速加大,造成灾害性大风. 相似文献
10.
利用济南cINRAD/SA雷达探测资料,对2005-2006年3次发生在山东境内的强天气过程的风暴单体演变趋势进行了分析。结果表明,在地面出现冰雹前,部分强单体具有基于单体的垂直累积液态水含量(C—VIL)和单体强中心高度同步增长现象;在地面出现大风前,部分强单体具有C-VIL和单体强中心高度同步下降现象;同步增长现象的特征表现为强中心高度增加到6km以上,C—VIL至少增加18kg·m^-2,冰雹预测时间提前量在7~20min之间;同步下降现象的特征表现为强中心高度下降2km以上,C—VIL至少减少10kg·m^-2,大风预测时间提前量在0~9min之间。 相似文献