首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  国内免费   3篇
  完全免费   7篇
  大气科学   14篇
  2020年   2篇
  2019年   5篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2011年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
一种温度集合预报产品释用方法的初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈法敬  矫梅燕  陈静 《气象》2011,37(1):14-20
数值天气预报技术与能力在不断地发展与提高,集合预报是数值预报发展中的一个热点.集合预报产品所提供的大量预报信息,需要通过合适的产品释用处理来传递给用户,因此对集合预报产品进行解释与应用是实现其实用价值的一个重要环节.选取武汉站00:00 UTC地面气温(T2m)作为预报量,利用其历史观测资料及2008年1月份TIGGE资料中的NCEP 120 h集合预报资料,基于单一数值预报产品的贝叶斯统计处理技术--贝叶斯输出处理器(Bayesian Processor of Output,BPO),对NCEP集合预报各成员进行BPO建模,获得了各成员贝叶斯概率预报,研究了NCEP集合预报各成员在2008年1月份对武汉站00:00 UTC T2m的120 h预报能力差异.基于各成员有效信息评分(Informativeness Score,IS),尝试对各成员贝叶斯概率顶报进行融合,获得了代表NCEP集合预报不确定性的集成贝叶斯概率预报.初步试验结果表明,NCEP集合预报各成员具有不同的预报性能,各成员贝叶斯概率预报之间存在较明显差异,这种基于BPO的集合预报产品释用方法,可以将集合预报不确定性定性定量化为一个集成贝叶斯概率预报,从而实现集合预报的概率化.  相似文献
2.
基于评分最优化的模式降水预报订正算法对比   总被引:1,自引:1,他引:0  
使用2013年1月1日-2016年1月7日全国气象站观测资料,应用准对称混合滑动训练期,不改变雨带预报位置和形态,基于模式降水预报订正结果的TS评分最优化及ETS评分最优化,分别设计最优TS评分订正法(OTS)和最优ETS评分订正法(OETS)确定预报日各级降水订正系数,对2014-2015年降水数值预报进行分级订正,并与频率匹配法(FM)对比。结果表明:在24 h累积降水的多个预报时效订正中,无论是对欧洲中期天气预报中心、日本气象厅、美国国家环境预报中心和中国气象局的全球模式降水预报,还是对4个模式的简单多模式平均,OTS和OETS较FM在TS评分和ETS评分等传统降水检验指标上均更优秀,其中OTS在所有时效均能提高模式降水预报质量,为三者最优。在概率空间的稳定公平误差评分方面,OTS在各时效、各单模式及多模式平均等方面优势明显。在预报员对应参考时效上,OTS在24~168 h的24 h累积降水预报中的TS评分也优于主观预报。  相似文献
3.
基于邻域法的高分辨率模式降水的预报能力分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011—2013年ECMWF、日本、T639高分辨率模式降水预报数据,CMORPH(NOAA Climate Prediction Center Morphing Method)卫星与自动站逐小时降水融合资料,基于邻域法FSS(Fractions Skill Score)、ETS(Equitable Threat Score)评分指数,分析模式的降水预报性能。(1) 暖季(5—9月)三家模式对小雨量级降水预报频率偏多,随着降水量的增大,模式预报频率逐渐减小,降水阈值10.0 mm左右时,预报频率接近无偏,FSS趋于1,其中T639模式受尺度变化影响最大。(2) 对ECMWF模式来说,降水阈值小于5.0 mm时,增加空间尺度,能够同时提高降水量级、范围的预报准确率,对5.0 mm以上量级降水,增加尺度不利于提高ETS评分;对T639模式来说,调整邻域空间尺度对降水FSS、ETS评分影响不大。(3) ECMWF、日本模式分别在局地性、系统性降水上有较好的预报表现,使用较大邻域来评定局地性降水并不合理,但对系统性降水来说,50~110 km的空间尺度能够取得较好FSS评分。(4) 不同月份上,三家模式的降水量级、范围的预报技巧评分不尽相同,整体来说,三家模式均在7月降水量级预报最合理。  相似文献
4.
陈法敬  矫梅燕  陈静 《气象学报》2011,69(5):872-882
为用户提供概率天气预报信息是公共气象服务的发展趋势,概率天气预报技术的不断改进实现了概率天气预报信息的不断优化。在众多概率天气预报技术方法中,贝叶斯预报处理器是一种新近出现的、基于贝叶斯统计理论的概率预报技术;贝叶斯预报处理器可以根据一个确定性预报系统的预报值与观测值之间代表着这个系统预报性能的统计关系,借助于贝叶斯统计理论,把一个确定性预报转化为一个概率预报,从而实现对预报不确定性的定量化。由于亚高斯似然模型可以适用于多种单调似然比随机依赖结构,故采用该似然模型的亚高斯贝叶斯预报处理器,它在气象、水文等领域具有较强的适用性。在简要介绍了连续型二维随机变量情形下的贝叶斯定理及正态-线性贝叶斯预报处理器之后,详细论述了采用单一预报因子的连续型预报量亚高斯贝叶斯预报处理器,并以长沙站和武汉站2008年1月每日00时(世界时)地面气温(T2m)的中国国家气象中心、欧洲中期天气预报中心、美国国家环境预测中心集合预报中的控制预报资料(预报时效选为96h)作为确定性预报样本,对亚高斯贝叶斯预报处理器进行了初步试验。结果表明,亚高斯贝叶斯预报处理器可以将T2m各集合预报中的控制预报转化为能定量地表达各控制预报不确定性的T2...  相似文献
5.
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.  相似文献
6.
对我国华东、华南、华北区域气象中心和中国气象局数值预报中心业务运行的区域模式2011年5-9月的6 h降水预报,采用不同检验结果平均方案进行对比检验。对比结果表明:不同的检验结果平均方案基本不影响与中国气象局数值预报中心模式(NMC-GRA)在相同区域关于TS评分比较的相对检验结论,即当两个模式评分差距较大时,评分高的模式在两个方案中是一样的,但评分比较接近时,若有一个模式对该区大尺度降水预报较好时,则可能在新方案中有较高的TS评分,而此模式原方案评分则可能略低于局地小尺度降水预报较好的模式。但对于较少发生的强降水预报的预报偏差的评价有很大不同,当新方案的结果显示多数模式对强降水的预报偏少,原方案则可能显示偏多,说明模式对大尺度的强降水预报较实况偏少,但对小尺度局地降水的预报则可能偏多。  相似文献
7.
基于TIGGE中欧洲中期天气预报中心和美国国家环境预报中心全球集合预报系统(EC_GEPS和NCEP_GEPS)的2016年1月1日—2017年12月31日连续2 a的预报资料,对两套系统在西南地区10 d以内的2 m温度和24 h定量降水预报进行检验评估和综合分析。2 m温度预报检验结果表明:EC_GEPS和NCEP_GEPS的2 m温度控制预报和集合平均预报的均方根误差均普遍偏高且NCEP_GEPS总体而言优于EC_GEPS;两套系统集合平均均方根误差相对于控制预报改进不明显;集合离散度均明显偏低;Talagrand分布均呈现出非常明显的"J型"分布特征,Outlier评分普遍偏高且EC_GEPS的Outlier评分明显低于NCEP_GEPS;从集合最小值到集合最大值,随着集合百分位的增大,各个预报时效的均方根误差逐渐减小,集合最大值预报技巧最高。降水预报检验结果表明:EC_GEPS和NCEP_GEPS的24 h定量降水预报的Talagrand分布总体而言均呈现出"L型"分布特征且NCEP_GEPS更加明显;NCEP_GEPS各个预报时效的Outlier评分均普遍偏高且明显高于EC_GEPS;EC_GEPS的降水概率预报技巧明显优于NCEP_GEPS;EC_GEPS的70%集合百分位预报技巧最高,NCEP_GEPS的80%集合百分位预报技巧最高。EC_GEPS和NCEP_GEPS在西南地区的2 m温度预报和降水预报均存在一定的系统性误差,进行相应的集合预报系统性偏差订正应该能较好地改进预报技巧。  相似文献
8.
针对当前暴雨预报检验采用二分类事件检验方法存在的双重惩罚导致评分过低,没有考虑到中国暴雨可预报性时、空分布不均,不便于对比分析不同区域暴雨预报能力差异等问题,为了发展基于可预报性的新型暴雨预报评分方法,在综合分析影响预报员暴雨预报信心的主要因素(暴雨气候统计特征、天气影响系统运动尺度特征及数值模式预报能力等)基础上,利用2008—2016年4—10月中国国家气象信息中心5 km×5 km分辨率的多源降水融合格点分析资料、站点降水观测资料和中国国家级业务区域模式降水预报资料以及扩展空间暴雨样本统计方法,构建了一种新型的中国暴雨可预报性综合指数(Synthetic Predictability Index of Heavy Rainfall,以下简称SPI)数学模型,以定量描述中国各区域的暴雨可预报性特征。SPI数学模型由暴雨气候频率、暴雨面积比率和模式暴雨预报成功指数(Threat Score,TS)3个分量组成,计算了2008—2016年4—10月SPI的3个分量及其时、空变化特征。分析结果显示:暴雨面积比率对SPI的时间和空间变化影响最大,两者偏相关系数大于0.9;其次是暴雨气候频率的影响,两者偏相关系数值为0.8左右;第三是模式暴雨预报TS评分的影响,两者的偏相关系数为0.7左右。分析还发现,SPI大值区随季节而变化,空间分布不均匀:4—5月,可预报性大值区主要分布在华南地区;6—7月,主要分布在江淮流域; 7月中旬至8月,大值中心从江淮北部移到华北和东北地区;9月,副热带高压南撤,大值中心也相应南撤。  相似文献
9.
针对当前暴雨预报检验采用二分类事件检验方法存在较严重的"空报""漏报"双重惩罚,没有考虑暴雨时空分布不均和预报评分可比性不够等问题,在分析预报员对暴雨预报评分期望值基础上,设计了一种基于可预报性的暴雨预报检验评分新方法和计算模型,分析了理想评分,并对2015—2016年4—10月中国中央气象台5 km×5 km定量降水格点预报和降水落区等级暴雨预报进行评分试验,获得了以下结果和结论:(1)预报员对暴雨预报评分期望值呈现梯级下降特征,与传统的TS评分存在显著差异;(2)设计了一种基于可预报性的暴雨预报检验新方法,通过引入e指数函数构建暴雨预报评分基函数,进而构建暴雨评分模型,该模型可以较好地拟合预报员对暴雨预报评分的期望值,同时改善了评分在不同量级阈值处的断崖式突变情况;(3)提出了预报与观测的邻域匹配方法,即一个预报点与所定义邻域中的一组观测相匹配,并利用距离加权最大值法确定暴雨评分值权重系数,预报与观测距离越近,距离权重系数越大,评分值权重越大,提高了评分的合理性,避免了距离较远的匹配站点得高分不利于鼓励预报员提高预报精度的问题;(4)对中国中央气象台逐日5 km×5 km水平分辨率的定量降水格点预报产品和中央气象台定量降水落区等级预报产品进行了评分试验,暴雨预报准确率全国平均值大于60分。基于可预报性的暴雨预报检验新评分与传统暴雨预报TS评分逐日演变特征相似,但可以较好地解析TS为0的预报评分,解析后的新评分与预报员和公众的心理预期更为接近。  相似文献
10.
降水邻域集合概率法是处理高分辨率降水集合预报不确定性的一种新方法。利用2017年5~7月GRAPES(Global and Regional Assimilation and Prediction Enhanced System)区域集合预报系统24 h降水预报资料,进行GRAPES降水邻域集合概率方法试验,并针对邻域概率法的等权重和邻域尺度问题,设计了邻域格点权重修正邻域方案以及二分类权重修正邻域方案,进行降水的集合概率法、等权重邻域集合概率方法、权重修正邻域集合概率方法和二分类权重修正邻域集合概率方法等四种方法的格点相关及敏感性试验,并利用多种概率预报检验评分评估上述四种方法的预报效果。试验结果表明:(1)尽管采用邻域计算方案的三种邻域集合概率方法的降水概率预报评分各有优劣,如等权重邻域集合概率法的相对作用特征曲线面积评分略优,而权重修正邻域集合概率法和二分类权重修正邻域集合概率法的降水概率预报可靠性更高,但采用了邻域计算方案的降水概率预报评分均优于传统的集合概率方法;(2)降水邻域集合概率方法的预报技巧对邻域尺度很敏感,统计评分最优的邻域半径为5~8倍模式水平格距;(3)引入了权重修正的两个邻域集合概率预报方法在24 h降水量超过10 mm时改进较明显,能够提供更加客观的概率预报结果。总体上看,降水邻域集合概率方法具有较好的应用前景,恰当的邻域概率方法及邻域半径可以获得更合理的降水概率预报结果。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号