首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   5篇
大气科学   17篇
自然地理   6篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   5篇
  2012年   4篇
  2011年   1篇
  2007年   3篇
排序方式: 共有23条查询结果,搜索用时 125 毫秒
1.
2009年中国东北夏季低温及其与前期海气系统变化的联系   总被引:6,自引:2,他引:4  
依据中国东北地区拥有百年地面观测记录的长春和哈尔滨测站气温资料、NCEP/NCAR再分析资料和英国哈得来中心海表温度资料,揭示2009年东北地区发生的迄今已有15年没有出现的夏季低温事件成因.结果表明:发生东北夏季低温时的水平和垂直环流结构均为低值系统,东北冷涡异常活动是其最直接的影响因子;有利的年代际变化背景是,哈尔滨和长春6-8月平均气温年代际尺度(≥9 a)的振荡值1999-2008年约-O.8℃/10 a,显著低于全球变暖东北区域响应的线性增暖值0.2℃/10 a(1961-2000年),与长春和哈尔滨夏季气温呈正相关的前一年冬季太平洋极涡面积指数年代际振荡亦呈显著下降趋势.与1994-2008年东北夏季高温的500 hPa平均环流距平场显著不同,北极涛动呈强的负位相分布,东北亚、阿留申和北大西洋上空为显著负距平区;2009年前一年冬季与明显低温的1972年的前一年冬季北太平洋涛动均呈显著的负位相,春季仍持续,且2009年前一年冬季赤道中东太平洋SSTA为拉尼娜位相,2009年春季明显减弱;2009年6-7月夏季东北冷涡活动异常强与4-5月500 hPa北太平洋地区超长波扰动转为定常波扰动槽有关;SVD和谐波分析表明,北太平洋涛动的异常位相不仅是东北夏季气温变化的重要前期信号,还是大气中除了天气尺度的混沌分量外可提取的一种行星尺度稳定分量.  相似文献   
2.
3.
Based on the daily mean temperature data of CN05.2 from 1961 to 2012, cold events (CEs) are first divided into two categories according to their duration: strong cold events (SCEs) and weak cold events (WCEs). Then, the characteristics of CEs, SCEs, and WCEs during springtime are investigated. The results indicate that in the pre-1990s epoch, ENSO and Arctic Oscillation events in the previous winter are closely related to SCEs in the following spring. The multidecadal variations of CEs, SCEs, and WCEs are obvious. The intensity trend for SCEs is significantly negative, but it seems less apparent for WCEs. Further analysis reveals that when both SCEs and WCEs occur, a typical East Asian trough in the 850- hPa wind field, whose northwesterly wind component invades Northeast China (NEC) and causes freezing days, can be found in every decade. For the SCEs, a cold vortex, with its center located over Okhotsk and northeasterly current affecting NEC, is found as an additional feature. For the WCEs, the cold vortex is located in Karafuto and its northwesterly airflow intrudes into NEC. As for the difference between SCEs and WCEs, the northwestern flow is weaker while the northeastern counterpart is stronger during the SCEs, in all decades. In the Takaya–Nakamura flux and divergence fields, for the SCEs, a divergence center exists over NEC; and over its downstream regions, a stronger divergence center appears, not like a wave train. However, the opposite is the case for the WCEs; moreover, the wave train appears clearly during the WCEs, which means that the wave energy can propagate and dissipate more easily during WCEs.  相似文献   
4.
利用1980—2016年第二松花江流域(SSR)夏季(6—8月)平均降水量资料、NCEP/NCAR再分析月平均环流场资料、NOAA的月平均海温场资料,采用年际增量预测方法,通过分析与SSR夏季降水年际增量相关的环流及海温,确定了超前12个月内的6个预测因子,包括:11月东亚200hPa纬向风、12月西藏高原-2指数、12月赤道中东太平洋200hPa纬向风、2月印度洋海温、10月西太平洋暖池海温、4月东亚100hPa经向风。在此基础上利用这 6个预测因子,利用1980—2010资料建立SSR夏季降水年际增量的统计预测模型,最后根据年际增量给出SSR夏季降水的预测结果。经检验,1981—2010年,SSR夏季降水年际增量的预测拟合系数是0.83,SSR夏季降水预测结果拟合系数为0.67,SSR夏季降水预测结果相对均方根误差为15%,均通过了显著性检验;对2011—2016年进行试报实验,该模型也很好的预测出降水的年际增量变化趋势,除2014年以外,SSR夏季降水预测结果相对均方根误差绝对值都控制在23%以内,2016年仅为-9.9%。因此,通过预测降水的年际增量,进而再预测降水的方法,具有一定的预测技巧,可作为有效方法投入实际业务应用。  相似文献   
5.
东北夏季月低温事件的定义及大气环流年代际特征分析   总被引:1,自引:0,他引:1  
利用1960-2009年东北地区150个地面测站的逐日气温资料,定义了东北三省夏季月低温事件(简称MCSE),并将其分为5类。结果表明:MCSE发生频率在20世纪60-70年代较高,80年代逐渐减少,90年代显著减少; 6月和8月以第Ⅲ类MCSE为主,而7月则是第Ⅱ类;在冷气候背景下,第Ⅱ类MCSE正涡动能量是由高纬向中纬度传播,正常背景下是由中纬度向高纬度传播,第Ⅲ类则与之相反,暖背景下第Ⅱ类MCSE的能量传播方向与冷背景一样,而第Ⅲ类则先是由低纬度向高低纬度传播,然后是由高纬度向低纬度传播;同时还发现,在冷背景下第Ⅱ类和第Ⅲ类MCSE,中国东北地区都是处于大范围强冷空气带的覆盖下,而正常期气候背景下这两类MCSE的东北冷涡和乌拉尔山阻塞高压(西阻)都比较明显,在暖背景下,第Ⅱ类MCSE的阻塞高压(中阻)、鄂霍次克海阻塞高压(东阻)以及东北冷涡系统都很明显,而第Ⅲ类MCSE的阻塞高压(中阻)和东北冷涡明显。  相似文献   
6.
利用1951—2012年NCEP/NCAR全球月平均500 hPa高度场、气温场等再分析资料,北极涛动(AO)指数,北半球及其4个分区的极涡指数等资料,分析极涡和AO对北半球特别是欧亚大陆冬季气温异常分布的影响。北半球极涡面积指数与北半球气温相关场呈由北向南的"+、-"分布,显著正相关中心位于极区,显著负相关中心位于欧亚大陆中高纬度地区;AO指数与气温的相关场分布与此反位相。极涡各分区面积指数体现与各大洲气温显著相关的地域特征,尤其是亚洲极涡面积指数比AO的相关区域更偏向亚洲和中国东部及沿海地区,能表征亚洲大陆冬季风向中低纬度爆发的某些特征。2006年以来AO指数呈较明显的下降趋势,北半球、亚洲区极涡面积指数呈显著的上升趋势,这是有利于欧亚大陆近几年连续冬季气温异常偏低的年代际背景;2009—2011年北半球欧亚大陆冬季大范围低温事件,不仅与冬季AO负位相明显变强有关(2011年除外),与北半球以及亚洲区极涡面积指数偏大联系更为密切,亦表明该区域冬季变冷的自然变率明显增强。  相似文献   
7.
一次东北冷涡暴雨的水汽输送特征和位涡分析   总被引:1,自引:0,他引:1  
通过对2010年7月27~29日吉林省一次较大范围的冷涡暴雨、大暴雨过程进行诊断分析,建立了此类暴雨的天气概念模型:200 hPa呈现"两脊一槽"型,高空急流呈辐散状位于吉林省上空,急流中心最大风速≥60 m/s;500 hPa东北冷涡强烈发展,鄂海阻高稳定维持是此次强降水发生的重要天气系统,中心最大风速≥20 m/s的偏西风急流带横穿吉林省中部;850 hPa风速≥12 m/s的3条急流带在吉林省中东部地区交汇,形成低层辐合、高层辐散的气旋性涡度柱,较强的垂直上升气柱一直向上伸展到500 hPa附近,极有利于对流的发展和强降水的维持。通过计算整层水汽通量与吉林省逐6 h平均降水量的相关矢量场,结果表明:偏西、偏南及偏北3条水汽通道在吉林省中南部汇集是此次强降水发生的重要条件,暴雨落区与整层水汽通量汇合区密切相关,水汽输送以经向(南北方)水汽流入为主。暴雨期间具有较好的动力、热力及能量条件,特别是湿对流有效位能明显偏强,强降水出现在对流有效位能(CAPE)值由极大值开始下降的过程中。干侵入是激发冷涡发生、发展的动力条件之一,≥1 PVU(位涡单位)的高位涡舌在下降的过程中,同时南移,与中部地区强降水落区自北向南移动相吻合。  相似文献   
8.
采用东北三省150个测站1961~2010年的逐日温度资料和同期美国环境预报中心(NCEP)以及国家大气研究中心(NCAR)2.5°×2.5°分辨率的全球再分析资料,定义了东北夏季极端低温天气事件(extreme low-temperature event以下简称ELTE事件),统计给出了ELTE事件的发生、峰值和持续时间的日历表。根据该日历分析,发现了影响东北地区夏季ELTE事件的最主要的2条冷空气路径(西北路径和东北路径),1961~2010年期间,影响东北地区的ELTE事件最主要是受西北路径的冷空气的影响,其次是东北路径。同时也发现,ELTE事件20世纪80年代发生频率最高,90年代后开始减少,但是东北路径的ELTE事件在90年代以后开始明显的增加。还发现,ELTE事件发生的前4 d,贝加尔湖地区若是被低压槽覆盖,易发生西北路径的ELTE事件,若该区域被一个东北-西南走向的高压斜脊控制,同时鄂霍次克海区域存在一个低压中心,形成西北"+"东南"-"的跷跷板形态,易发生东北路径的ELTE事件。  相似文献   
9.
文中利用1948—2002年NCEP/NCAR全球再分析资料,1958—2002年ECWMF再分析资料,中国国家气候中心的618个测站1961─2005年的逐日降水量资料,采用作者确定的东亚夏季风(EASM)建立标准,探讨东亚夏季风在南海爆发以后继续向北和向东推进活动范围、建立、持续和撤退的时空分布特征,结果表明:(1)给出东亚—西北太平洋地区的东亚夏季副热带季风(EASSM)的定义,计算其建立时间(候)和空间分布,发现EASSM除继续向北推进的方向外,在20°─25°N还有明显向东的分支,以及向西稍偏北的分支,107.5°E以西的季风建立等时线梯度十分密集,而以东的等时线梯度很小,季风建立的等时线的总体以110°─115°E为轴心、明显向中国华北和东北地区凸起的近于折线的分布,表明EASSM先在中国大陆建立,而同纬度的中国近海和西北太平洋地区的夏季副热带季风后建立;(2)撤退的等时线则近于与建立的等时线相反分布,沿120°E的方向凸向南,表明中国东北地区和近海地区先撤退;(3)给出东亚─西北太平洋地区EASSM建立的概率等值线的空间分布,我们尝试定义了<35%概率等值线的地区为其影响的边缘地带,北边界始于黑龙江省北部48°N附近向东南经由黑龙江省南部和俄罗斯滨海省,穿过日本海止于日本北海道南部,其西边界由东北向西南沿中蒙边境止于青藏高原。20世纪90年代北部边缘地带与多年平均比偏南3─5纬度,而西部边缘变动较小,只向东偏了1个经度。  相似文献   
10.
利用1961-2012年CN05.2的日平均温度、日最低温度和日最高温度,将3种温度资料冬季相邻两天的降温情况分为弱降温、一般性降温和强降温3类,并分析了这3类降温的时空分布特征。结果表明:日平均温度和日最低温度的弱降温和一般性降温发生频次最大的地区位于大、小兴安岭地区和长白山山脉一带,而强降温发生频次最大的区域则为长白山山脉一带;这三类降温的高频发生时段均为20世纪60年代和70年代,随后开始减少,到21世纪初为发生频次最少时段。对日最高温度而言,弱降温和一般性降温高频发区为42°-45°N,呈带状分布,其北部和南部均为一般性降温发生频次的低发区,呈现"低-高-低"的频次分布特征,而强降温的高频发生区则位于长白山山脉一带;同日平均温度和日最低温度年代际变化特征一样,日最高温度3类降温均在20世纪60年代和70年代频次最大,其后发生频次开始减少。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号