首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  国内免费   1篇
大气科学   11篇
地质学   1篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2015年   1篇
  2013年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
基于辽宁省2010-2018年闪电定位(ADTD)资料,运用统计学方法分析了雷电流幅值时间变化特征;运用规程计算公式和IEEE推荐公式分别计算了雷电流幅值累积概率密度,并和实际地闪雷电流幅值累积概率密度曲线做了对比分析;运用最小二乘法拟合了IEEE推荐公式。结果表明:2010-2018年辽宁省地闪以负闪为主,占比高达89%,而负地闪雷电流幅值主要集中于-50~-20 kA;地闪频次在2011-2013年逐年升高,而后逐年减少,总地闪和负地闪的平均雷电流幅值自2010-2013年逐年降低,而后逐年升高;地闪主要发生在汛期的7-8月,平均雷电流幅值在冬季最高,且日变化平稳;雷电流幅值为20-50 kA的总地闪和负地闪累积概率密度曲线下降最快,而雷电流幅值在20 kA左右的累积概率密度曲线开始下降,总体下降速度较慢;通过对IEEE推荐公式进行拟合,拟合后的雷电流幅值累积概率密度分布曲线更加接近实际。  相似文献   
2.
辽宁省极端长历时暴雨时空分布及影响系统特征   总被引:1,自引:0,他引:1  
利用2005—2015年辽宁省自动气象站逐小时降水资料和NCEP的1°×1°格点再分析资料,分析了辽宁极端长历时暴雨的时空分布特征、影响天气系统和不同天气系统下的降水分布特征。结果表明:辽宁极端长历时暴雨分布广,大致可划分为4个易发区,降水雨强≥10 mm·h~(-1)的持续时间以6—8 h为主,最长可达14 h,最大雨强可达91 mm·h~(-1),总降水量6—7 h可达150—200 mm、8—10 h可达250—350 mm;暴雨次数年际变化大,7—8月是多发期,7月过程次数虽多但范围小,8月过程次数虽少但范围大,15—17时和22—02时最容易开始发生该型暴雨;高空影响天气系统中,鄂霍次克海阻塞高压次数最多且造成的降水持续时间最长、雨强最大、分布范围最广,纬向环流型暴雨分布零散,贝加尔湖阻塞高压型暴雨分布相对集中;地面影响天气系统中,高压后部型次数最多且造成的降水雨强最大,华北气旋造成的降水持续时间最长,高压后部型、台风型和江淮气旋型暴雨分布相对集中,蒙古气旋型和华北气旋型暴雨分布零散。  相似文献   
3.
采用中国气象局发布的“暴雨橙色、红色预警信号”定义,分别定义短时暴雨和短时大暴雨。利用辽宁2010—2018年5—10月1587个自动站逐时降水资料,统计分析短时暴雨、大暴雨空间分布特征和多尺度时间特征,从而得到短时暴雨、大暴雨的高发区、易发时段,并做简单天气学判断。结果表明:短时大暴雨高发区域位于辽宁东南沿海地区,可能是东北冷涡与北上气旋、西太平洋副热带高压等相互配合,导致辽宁省沿海地区易出现强度大、范围广和持续时间长的暴雨天气过程有重要关系;短时暴雨、大暴雨旬变化呈现“凸”字形结构,短时暴雨从5月上旬至10月上旬都可能发生,呈现单峰型特征。短时大暴雨显著增强从7月上旬开始,8月下旬后短时大暴雨急剧减少。短时暴雨、大暴雨日变化均呈现“两峰一谷”特征。短时暴雨以夜雨居多,可能与夜间西南急流加强有关。短时暴雨00—08时高发区域最为密集,活跃地区为阜新—朝阳、抚顺—盘锦—葫芦岛和辽宁东南部。短时大暴雨00—08时高发地区为辽宁西部、东部和东南部。  相似文献   
4.
一次暴雨过程数值模拟与诊断分析   总被引:1,自引:0,他引:1  
利用NCEP/NCAR分辨率为1°×1°再分析资料和气象台实测降水资料及TRMM 3 h降水资料,采用WRF中尺度数值模式,对2010年7月22日发生在黄河流域中游南部的一次暴雨过程进行了数值模拟及诊断分析。结果表明:WRF模式能较为成功的模拟出本次暴雨过程。此次暴雨在大尺度环流形势上,是由于西太平洋副热带高压与河套低压槽的共同影响产生的;来自印度洋、中国南海的大量水汽输送为暴雨提供了充足的水汽来源。处于200 hPa的高空急流,由于地转调整激发出了中尺度重力波,使用散度场、云水分布,能够确定中尺度重力波的存在和移动方向。在利用模拟资料分析重力波对甘肃省东部地区暴雨产生的原因时得出:高空急流中产生的中尺度重力波与低层大气对中尺度重力波的吸收作用,共同导致了该地暴雨的发生。由高空急流风向和非线性平衡方程的数值分布情况,可以提前判断中尺度重力波发生的区域和移动方向,从而能够提前对暴雨可能发生的区域和时间作出预报。  相似文献   
5.
陈传雷  管兆勇  纪永明  肖光梁  贾旭轩  程攀 《气象》2018,44(8):1051-1062
选取发生在辽宁的3次典型长历时暴雨过程,利用NCEP/NCAR 1°×1°再分析、FY-2E黑体亮温TBB、多普勒天气雷达和自动气象站等资料,分析了降水实况、天气形势背景、卫星红外云图、雷达回波的结构和强度变化的代表性特征。结果表明:辽宁长历时暴雨是在有利于产生暴雨的大尺度环流背景下,异常稳定的形势场导致冷暖空气在某一地区长时间相互对峙而形成的。该型暴雨的降水实况具有雨强变化小、强降水无明显阶段性特征和雨强变化大、强降水具有明显阶段性两种特征。一般性对流云团、暖云和深对流云团均可造成该型暴雨,其中一般性对流云团的云顶亮温变化幅度小,在-47~-36℃,暖云的云顶亮温在-8~3℃,深对流云团的云顶亮温-68~-50℃且强降水发生在云顶亮温低值中心偏向温度梯度大值区一侧。该型暴雨的雷达反射率因子强回波质心较低,表现为上游回波同一方向连续移入形成的"列车效应"、本地生成回波并不断加强以及不同方向的强回波先后移入影响三种类型,小时平均回波强度及其变化对降水强度和趋势有较好的指示意义。需要特别关注副热带高压西侧低层高能高湿、凝结高度低、整层近乎饱和且又具有局地地形抬升触发条件地区的暖云强降水的分析和监测。  相似文献   
6.
利用鲁东南地区18个代表站1961-2015年的逐日降水量、逐日天气现象、积雪深度资料,对近55 a来降雪的气候特征进行了统计分析。结果表明:鲁东南地区年均降雪日数、强降雪日数、降雪量、强降雪量及年均雪深、年最大积雪深度的空间分布总体上山区多于平原和沿海,区域差异明显。21世纪00年代以前为多雪时期,以后为少雪时期。近55 a的年均降雪日数、强降雪日数、降雪量、强降雪量及年均雪深、年最大积雪深度皆呈减少趋势,降雪由多转少的转折年份均在1993年,年均雪深、年最大积雪深度的减少分别出现在1987年、1986年。鲁东南地区降雪主要集中在1-2月份,3月份强降雪量最大,平均雪深、最大积雪深度的最大月份分别出现在11月份、3月份。降雪时段为10月23日-次年4月28日,降雪的初终日西北部山区皆为最早。降雪日数、强降雪日数、降雪量、强降雪量、雪深均存在3 a的周期,最大积雪深度存在4~5 a的周期。  相似文献   
7.
利用NCEP 1°×1°再分析资料和国家级自动站逐时观测资料及NOAA的2.5°×2.5°每月再分析资料,对2013年8月16—17日发生在辽宁抚顺地区清原县的特大暴雨过程进行水汽特征分析。结果表明:本次暴雨为副热带高压北抬促使高空槽在中国东北地区停滞少动,使得东北冷涡持续影响辽宁地区,切变线、低空急流为此次暴雨过程的主要影响系统;辽宁抚顺清原县这次暴雨过程的底层和中层的水汽来源主要为南海和孟加拉湾以及西太平洋两条通道;暴雨发生主要时间,南海和孟加拉湾及西太平洋提供重要水汽持续输送,这为暴雨的发展提供了充足的水汽。抚顺地区清原县暴雨发生的前期和发生时均存在强烈的水汽向上输送,高湿层即比湿大值区集中在从对流层一直延伸到500 h Pa;地面水汽通量散度极值中心比降水的极值中心提前出现2 h,且二者具有一定的正相关关系。地面水汽通量散度负值中心出现后2 h内对暴雨中心位置具有一定的预报意义。  相似文献   
8.
为了检验耦合了CLM4.5的区域气候模式RegCM4.7在加入砾石参数后对青藏高原土壤能量水分输送长期的模拟效果,因此选择青藏高原阿里站、那曲站、玛多站的观测数据和中国全球陆面再分析40年产品(CRA/Land)-逐日产品(陆面产品)对模式的模拟效果进行检验。结果表明:土壤温度的模拟效果较好,并且土壤深层较浅层相关系数更高,含砾石数据与再分析数据的偏差更小,多年数据的平均变化趋势更加统一;相较于土壤温度,土壤湿度的模拟效果稍差,尤其是在青藏高原中部,但是在青藏高原东部与西南部,模拟效果有较大提升,与再分析数据的偏差明显减小。通过连续多年的模拟发现,模式的模拟效果并未随着参数化方案的优化而逐年提升,而是在一定范围内波动,且每一年的模拟效果都较原模式在相关系数及均方根误差方面有所提升。  相似文献   
9.
王文  程攀 《大气科学学报》2013,36(2):174-183
利用NCEP/NCAR 1 °×1 °再分析资料、地面观测降水资料、FY-2E卫星相当黑体温度资料,采用WRF(Weather Research Forecasting)中尺度数值模式对2012年7月27日陕西省北部一次暴雨过程进行了数值模拟与诊断分析.结果表明:此次暴雨处于西太平洋副热带高压西北边缘带与贝加尔湖低压之间,中低层水汽由孟加拉湾经青藏高原东部输送到陕北;无规则小云团的自组织过程,促使中尺度对流系统得以发展.200 hPa急流出口区的右侧由于地转调整作用,在槽线上激发了中尺度重力波.高空重力波能量下传并被近地面中性层结大气吸收,引起低层大气对流发展,对暴雨的发生发展过程有很好的促进作用.  相似文献   
10.
为了研究冷涡与辽宁龙卷的关系,揭示冷涡背景下辽宁龙卷发生的特征,利用1951—2020年辽宁省龙卷观测和灾情数据以及欧洲中期天气预报中心ERA5大气再分析资料,收集整理冷涡背景下辽宁龙卷个例,对比冷涡背景下EF2—4级(EF2+)和EF0—1级(EF1?)龙卷物理量参数的差异。结果表明:(1)冷涡背景下辽宁龙卷主要出现在辽宁沿海地区和中部、北部平原。冷涡背景下辽宁龙卷主要发生在冷涡东南和西南象限,易出现在冷涡增强阶段。龙卷与冷涡中心平均距离近900 km,冷涡越强,龙卷出现位置离冷涡中心越远,反之越近。(2)1951—2020年冷涡背景下辽宁龙卷个数接近总样本的50%,龙卷个数与冷涡日数呈正相关;冷涡背景下辽宁龙卷发生位置与冷涡中心的距离具有明显的月变化,8月距离达到最近。(3)对比冷涡背景下EF2—4级(EF2+)和EF0—1级(EF1?)龙卷,EF2+龙卷比EF1?龙卷大气热力和动力学环境参数的强度分别高出40%和65%以上。对比冷涡背景下辽宁龙卷和热带气旋龙卷发现,冷涡龙卷的对流有效位能是热带气旋龙卷的3倍左右,但风暴相对螺旋度只有热带气旋龙卷的1/2。(4)能量螺旋度和龙卷参数可区分冷涡背景下辽宁龙卷等级,远低于美国龙卷综合参数阈值。可见,冷涡强度、位置和辽宁龙卷的产生关系密切,冷涡背景下EF2+龙卷物理量参数明显大于EF1?龙卷,冷涡背景下辽宁龙卷与热带气旋龙卷的热力、动力学环境参数有较大差异,调整能量螺旋度和龙卷参数阈值标准,可以提高冷涡背景下辽宁强龙卷发生的命中率。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号