首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
  国内免费   2篇
大气科学   9篇
  2022年   1篇
  2020年   2篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
利用1971—2011年辽宁省58个常规观测站日最低气温资料,分析辽宁寒潮时空分布特征。结果表明:1971—2011年辽宁寒潮年平均频次空间分布存在两个大值中心,一个位于辽宁东北部地区,另一个位于辽西建平地区;11月大范围强寒潮出现最多。近41 a辽宁区域性寒潮在20世纪70年代出现最多,呈不显著的下降趋势;寒潮在10月中旬至翌年5月上旬均可出现,12月上旬至翌年2月下旬是寒潮集中出现时段,出现最多的是1月;区域性寒潮出现次数存在20、13、8a和4a的变化周期。影响辽宁区域性寒潮的主要天气形势有小槽发展型、横槽型和低槽东移型。寒潮物理量预报指标主要有:寒潮前至少有一日升温过程;500 hPa冷中心温度≤-40 ℃;地面冷高压主体中心气压为1050 hPa以上,分裂小高压中心气压为1030 hPa以上;500 hPa和850 hPa急流普遍为24 m.s-1和12 m.s-1以上;850 hPa辽宁附近等温线密集程度≥5条/10纬度;风向与等温线夹角基本大于60°。  相似文献   
2.
黄渤海北部沿海大风时空变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
基于1971-2008年黄渤海北部沿海18个基本气象站风向、风速历史资料和NCEP再分析资料,利用统计学、小波分析和天气学分型方法分析了黄渤海北部辽宁沿海风场时空变化特征。结果表明:黄渤海北部沿海大风呈明显减少趋势,大风主要出现在春季,4月最多,11月份次之。风向主要以偏北风和偏南风为主,夏半年主要以南风为主,冬半年盛行偏北风。海上大风的天气学分型主要划分为冷锋后部型、高压后部型、台风型和气旋型,其中气旋型又包括江淮气旋型、华北气旋型、蒙古气旋型和东北低压型;冷锋后部型大风出现次数最多,气旋型次之,台风型最少。  相似文献   
3.
利用7d固定误差订正和滑动误差订正方法对2014年冬季辽宁地区中尺度业务模式2m温度预报产品插值结果进行订正,并将订正结果与中央气象台MOS预报进行对比,分析MOS、7d固定误差订正和滑动误差订正3种数值模式后处理方法对辽宁地区冬季温度预报准确率的影响。结果表明:经过两种误差订正后的预报结果准确率均比数值模式预报插值结果高,滑动误差订正效果优于7d固定误差订正;24h最高气温预报中,滑动误差订正结果的准确率最高;最低气温预报中,08时滑动误差订正结果准确率高于中央气象台MOS预报,但20时滑动误差订正结果准确率低于MOS预报。滑动误差订正需1—15d的资料积累,比MOS方法所需资料少且操作简单,适合观测资料积累少的地区开展数值模式的温度订正。  相似文献   
4.
1960—2009年辽宁区域性暴雪气候特征   总被引:3,自引:0,他引:3  
利用1960—2009年辽宁58个测站逐日降水资料,分析了区域性暴雪气候变化特征。结果表明:辽宁区域性暴雪主要出现在每年11月下旬至翌年3月15日,2月为最多月。近50 a区域性暴雪过程次数呈上升趋势,并且存在9、5a和3a的周期变化;9a的周期变化信号一直存在,但强度自20世纪60年代末开始增强,70—80年代最强;5 a的周期变化信号自70年代初期开始出现,强度在70年代中期开始增强;3a的变化信号一直存在,强度在70年代中期、80年代最强。区域性暴雪过程次数和暴雪总量自东南部向西北部逐渐减少,空间分布有3个中心,分别为:沈阳—抚顺—本溪一带、鞍山附近和丹东凤城地区。辽宁区域性暴雪落区主要有4种分布,分别为中东部暴雪型、东部暴雪型、南部暴雪型和西部暴雪型。  相似文献   
5.
两次引发辽宁暴雪过程低涡的动力发展机制   总被引:1,自引:1,他引:0  
阎琦  温敏  陆井龙  李爽  田莉 《气象》2016,42(4):406-414
应用NCEP FNL分析资料,从动力学角度对2015年初辽宁地区两次低涡暴雪过程(简称"2.16"和"2.25"过程)的形成机制进行分析。结果表明:两次过程共同特点是850 hPa附近有低涡生成或加强,低涡是暴雪引发的直接原因。两次过程促使低涡生成的正涡度变率增大原因存在差异,"2.16"、"2.25"过程中对正涡度变率贡献最大的强迫项分别是散度项和涡度垂直输送项。500 hPa低涡东移,冷平流使得涡底部高空槽加深,槽前正涡度平流加强,差动涡度平流增大使得上升运动发展,导致850 hPa高度附近辐合增强是"2.16"过程正涡度变率增长、低涡生成的动力机制。强烈上升运动,对低层正涡度垂直输送,则是"2.25"过程850 hPa附近低涡形成和加强的动力机制。  相似文献   
6.
利用WRFv3.9.1中尺度数值模式,采用Lin、WSM6、Thompson、WDM6四种微物理过程参数化方案对2007年3月4日辽宁特大暴雪过程进行了数值模拟研究。使用61个国家级气象站降水观测资料,评估了模式对此次降水过程的模拟能力,对比分析了不同微物理过程参数化方案模拟降雪过程中相态变化和水成物空间分布的差异。结果表明:4种微物理过程参数化方案均能模拟出与CloudSat卫星反演反射率分布相接近的结果,其中Thompson方案模拟的回波顶更高,向北伸展的范围也更大,其他3种方案回波顶高均在8 km附近。4种方案对降水落区的模拟略有差异,整体来看WSM6方案对本次降水的极值中心位置,以及不同降水量级的TS评分整体都优于其他3种参数化方案。降水相态模拟与观测的对比分析发现,WSM6、Lin和WDM6三种方案均能够模拟出雨雪分界线不断南压的过程且雨雪分界线位置准确,而Thompson方案对辽宁南部地区雨转雪时间模拟偏晚。从云微物理特征上看,4种方案均能模拟出大气低层存在的雨水粒子,其中WDM6方案模拟的雨水含量明显较其他3种方案更多,Thompson方案模拟出更多的雪粒子和最少的霰粒子,Lin方案霰粒子南北范围广、伸展高度高,WSM6和WDM6两种方案模拟出较少的霰粒子,这两种方案模拟的云冰高度也更低,正是各种水成物空间分布的差异决定了不同微物理过程参数化方案对降水量和降水相态模拟的差异。   相似文献   
7.
利用辽宁省291个国家气象观测站的降水资料,对2019年夏季(6-9月)8种模式降水预报及中央气象台格点降水预报进行了检验评估和比较,并采用消空方法进行晴雨预报技术研究。结果表明:2019年,EC模式具有最优的暴雨预报性能,而日本模式暴雨TS评分最高;中尺度模式对于局地性暴雨和短时强降水具有较好的预报潜力,性能较好的是GRAPES_MESO模式和睿图东北3 km模式;全球模式对24 h暴雨的预报频率比实况偏低30%,3 h强降水则偏低60%,中尺度模式对24 h暴雨的预报频率比实况偏高30%,3 h强降水则偏低20%。由于对小量级降水存在较多空报,各模式原始预报的晴雨预报大多呈现空报偏多的情况;使用小量级降水剔除的消空策略能够明显提高晴雨准确率,消空之后EC模式具有最优的晴雨预报性能。分别使用24 h和3 h累计降水量优化消空策略,发现分别取1.0 mm和0.8 mm的阈值进行消空可以使24 h晴雨准确率提高15.58%,3 h晴雨准确率提高10%-30%。  相似文献   
8.
利用1979年1月至2019年12月的ERA5资料,采用小波分析、突变M-K检验等统计方法,对1979—2019年持续时间在3 d及以上的东北冷涡过程特征进行分析。结果表明: 持续性东北冷涡过程的年平均发生次数为32.8次,最多41次,最少22次; 其中5—6月最多。年总频次存在17 a、9 a、5 a和3 a的变化周期。东北冷涡过程持续时间越长,出现的几率越小,持续时间最长的一次为13 d; 持续3 d的东北冷涡过程最多,持续9 d和10 d的过程出现频率接近十年一遇,出现10 d以上的冷涡过程6月最多。南涡出现的频次明显少于北涡和中涡,中涡最多; 北涡各月频次差异不明显,中涡、南涡5月和6月明显多于其他月份。在120°—130°E、45°—55°N的区域冷涡中心相对密集。夏、冬半年东北冷涡极端偏多月份东亚地区均为两脊一槽型。  相似文献   
9.
1109号“梅花”台风对辽宁降水的影响分析   总被引:3,自引:1,他引:2       下载免费PDF全文
孙欣  陆井龙  韩江文 《气象科学》2013,33(3):333-339
利用逐日NCEP再分析、常规观测、加密自动站、卫星云图及多普勒雷达等资料,分析了1109号台风“梅花”路径、结构和降水变化的原因,并对“梅花”的物理量特征进行了诊断分析.结果表明:副热带高压外围引导气流较强时,台风沿引导气流方向行进,引导气流较弱时,台风受高空槽的吸引,移动路径产生向西的分量;中低层冷空气的侵入,破坏了台风自上而下的暖心、不对称结构,呈现上暖下冷的稳定结构,趋于向温带气旋变性.“梅花”影响辽宁前期,主要受台风外围气流影响,水汽厚度浅薄,但维持时间长,产生的累计雨量较大.后期台风残余云系,在冷空气的作用下,冷暖空气交界处激发出整层上升运动,同时在台风外围水汽、偏南季风水汽共同作用下水汽厚度增加,更充沛的水汽来源为更强降水提供了有利的水汽条件,在辽宁中南部产生暴雨大暴雨天气.此外,雷达、自动站反映的中尺度切变、涡旋,为对流系统发展起到了触发作用.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号