首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   272篇
  国内免费   331篇
测绘学   96篇
大气科学   302篇
地球物理   382篇
地质学   720篇
海洋学   174篇
天文学   118篇
综合类   179篇
自然地理   163篇
  2024年   3篇
  2023年   25篇
  2022年   80篇
  2021年   84篇
  2020年   57篇
  2019年   84篇
  2018年   67篇
  2017年   78篇
  2016年   86篇
  2015年   64篇
  2014年   99篇
  2013年   70篇
  2012年   72篇
  2011年   71篇
  2010年   99篇
  2009年   93篇
  2008年   94篇
  2007年   87篇
  2006年   60篇
  2005年   65篇
  2004年   25篇
  2003年   40篇
  2002年   35篇
  2001年   42篇
  2000年   67篇
  1999年   79篇
  1998年   55篇
  1997年   44篇
  1996年   57篇
  1995年   45篇
  1994年   42篇
  1993年   33篇
  1992年   21篇
  1991年   18篇
  1990年   16篇
  1989年   23篇
  1988年   16篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1958年   2篇
排序方式: 共有2134条查询结果,搜索用时 15 毫秒
1.
剪切波分裂是分析地震各向异性的一种重要手段,常规方法是利用网格搜索获取分裂参数,再通过不同方法的测量结果对比测量结果进行质量检测,这一过程会耗费大量计算时间。本文针对这一问题提出了一种利用深度卷积神经网络对剪切波分裂进行质量检测的新方法,对使用了Resnet残差结构的深度神经网络进行训练,直接对二分量剪切波波形数据的质量进行分类。整个过程为:神经网络通过卷积层提取波形特征,计算损失函数后反向传播训练模型参数,完成迭代训练后的模型对输入波形数据正向计算自动输出类型。本文利用川西台站接收到的实际数据以及随机生成的合成数据分别对该网络进行训练,均可以获得准确的分类结果。相比于通过多种剪切波分裂方法对比测量结果的质量检测方法,基于神经网络的方法可以省略网格搜索的计算过程直接判断质量类型,在运算速度上的优势明显,并可继续通过训练提高模型的精度,为提升剪切波分裂方法在数据处理过程中的操作效率提供帮助。  相似文献   
2.
A uniaxial concrete constitutive model considering the bond-slip effect is proposed and its finite element analysis (FEA) implementation on a fiber section  相似文献   
3.
强震动记录H/V谱比法自提出以来,已广泛应用于地震工程各研究领域中。但对数据处理的2个关键环节——Taper预处理及傅氏谱平滑未有详细研究。因此,本文针对强震动记录H/V谱比法计算涉及的重要数据处理过程,对四川地区19个强震动台站在汶川地震余震中获取的642组强震动记录开展研究。研究实例表明:S波H/V谱比振幅在周期 < 1s时高于全时程,论证计算H/V谱比时截取S波窗口的必要性;S波窗口的截断会引起傅里叶振幅谱的边瓣效应,若不加以处理,将显著影响低频部分H/V谱比结果,Taper预处理对于消除这种截断误差具有良好效果;在兼顾平滑效果及卓越周期识别准确度的基础上,通过不同带宽的Parzen窗试算,认为0.5Hz带宽宜用于傅里叶H/V谱比曲线平滑。  相似文献   
4.
Science China Earth Sciences - In order to better understand the role of post-collisional mafic magmatism at convergent plate boundaries in revealing the earth’s evolution, this paper has...  相似文献   
5.
Tillage on hillslopes may not only induce severe soil erosion, but may also cause bedrock erosion under certain conditions. Yet, little is known about bedrock erosion by tillage in a hilly agricultural landscape, southwest China. The aim of this study is to quantify the translocation of rock fragments derived from bedrock fragmentation by hoeing under different conditions, including slope gradient, hoeing depth and soil-covered thickness using a gravel tracing method. The reliability of the gravel tracing method was confirmed by the bedrock dyeing tracing method. Hoeing depth is a significant factor affecting the translocation rate of rock fragments (Qr ). Meanwhile, under the condition of overlying soil layers (0.06−0.10 m thick), the values of Qr were significantly smaller with a reduction of 20.7−25.6%, compared with rock fragmentation by hoeing for bare bedrock. However, slope gradient was found to have insignificant effects on Qr . Fractured bedrock moved as individual small fragments, which was mainly controlled by the hitting force of the hoe, while soil moved in the shape of lumps, which was dominated by both drag force of the hoe and gravity. This study suggests that hoeing into soil-covered bedrock can diminish bedrock erosion while providing soil matrix for shallow soil layers. Our work presents a quantitative assessment of bedrock erosion by hoeing and an underlying insight into characteristics of bedrock erosion by tillage operations in hilly agricultural regions with mudstone and shale, southwest China. © 2020 John Wiley & Sons, Ltd.  相似文献   
6.
The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south-central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U-Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south-central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.  相似文献   
7.
深化含油气沉积盆地的压力结构研究,厘清异常压力的空间展布,对划分含油气系统、评价有利输导体系与明确勘探甜点区带具有重要的理论和实践意义。为深化渤海湾盆地富油凹陷的油气二次勘探,本文以歧口凹陷为研究对象,对其压力结构进行重点刻画。在实测地层压力的校正下,综合单井、连井和二维地震地层压力结构分析,厘清了歧口凹陷的压力结构特征,识别出4类纵向压力结构:①单超压带结构;②双超压带结构;③多超压带结构;④静水压力结构。纵向上,歧口地区存在3类纵向压力系统样式——单超压系统、双超压系统、静水常压系统。双超压系统是歧口凹陷的主要压力系统样式,广泛发育于主凹和各大次凹;从凹陷中心向盆地边缘,双超压系统逐渐向单超压系统、静水常压系统过渡。单超压系统主要分布于盆地边缘的斜坡和潜山区,如歧北高斜坡、羊三木-扣村潜山等。静水常压系统则主要分布在离深凹区更远的沈青庄潜山和埕北斜坡区域。上部超压系统和下部超压系统的顶板分别位于东营组和沙三段内部,侧向上受盆地边缘和深大断裂控制。上部超压系统的形成主要受欠压实作用控制,以歧口主凹为中心呈环带分布;而下部超压系统的形成主要受生烃作用控制,以主凹和几大次凹为中心分布。未来,下部超压系统中保存的天然气将成为歧口地区超深层天然气勘探的重点对象。  相似文献   
8.
The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo- Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.  相似文献   
9.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   
10.
Dai  Guofei  Gan  Nanqin  Song  Lirong  Fang  Shaowen  Peng  Ningyan 《中国海洋湖沼学报》2018,36(4):1103-1111
Journal of Oceanology and Limnology - Microcystins (MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号