首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   255篇
  国内免费   311篇
测绘学   91篇
大气科学   289篇
地球物理   376篇
地质学   692篇
海洋学   169篇
天文学   117篇
综合类   165篇
自然地理   151篇
  2024年   3篇
  2023年   23篇
  2022年   76篇
  2021年   80篇
  2020年   56篇
  2019年   75篇
  2018年   61篇
  2017年   75篇
  2016年   78篇
  2015年   58篇
  2014年   89篇
  2013年   68篇
  2012年   69篇
  2011年   69篇
  2010年   92篇
  2009年   91篇
  2008年   93篇
  2007年   81篇
  2006年   57篇
  2005年   65篇
  2004年   25篇
  2003年   40篇
  2002年   35篇
  2001年   41篇
  2000年   67篇
  1999年   79篇
  1998年   55篇
  1997年   44篇
  1996年   57篇
  1995年   45篇
  1994年   42篇
  1993年   33篇
  1992年   21篇
  1991年   18篇
  1990年   16篇
  1989年   23篇
  1988年   14篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1958年   2篇
排序方式: 共有2050条查询结果,搜索用时 15 毫秒
1.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   
2.
以广州市20个典型社区为例,构建多元线性回归模型,探讨了绿色空间对居民休闲性体力活动的影响,并剖析绿色空间对不同类型社区居民休闲性体力活动影响的作用机制。结果发现:1)不同类型社区居民的休闲性体力活动水平存在明显差异,低档社区的为782.99 MET-min/w,中档社区的为871.70 MET-min/w,高档社区的为1 227.91 MET-min/w;2)影响不同类型社区居民休闲性体力活动水平的绿色空间因素有所不同,低档社区、中档社区和高档社区的显著因子分别为“到最近公园广场距离”“邻里绿化覆盖率”和“健身活动设施数量”;3)绿色空间对休闲性体力活动水平影响的作用机制存在社区差异,低档社区居民休闲性体力活动主要受到成本作用的约束,中档社区居民主要受绿化环境作用影响,而高档社区居民主要受机会作用影响。  相似文献   
3.
Xiao  Yang  Yuan  Zhengxin  Lin  Jia  Ran  Jinyu  Dai  Beibing  Chu  Jian  Liu  Hanlong 《Acta Geotechnica》2019,14(6):2123-2131
Acta Geotechnica - Few studies have focused on the influence of particle shape on the mechanical properties of cemented sand. To address this lack of information, this study investigated the...  相似文献   
4.
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2 nd Version(RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-frameworkbased control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.  相似文献   
5.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   
6.
Dai  Guofei  Gan  Nanqin  Song  Lirong  Fang  Shaowen  Peng  Ningyan 《中国海洋湖沼学报》2018,36(4):1103-1111
Journal of Oceanology and Limnology - Microcystins (MCs) are cyclic hepatotoxic peptides produced by the bloom-forming cyanobacterium Microcystis and present a public health hazard to humans and...  相似文献   
7.
We present multi-color photometric observations and a one-dimensional spectrum, acquired from March 2016 to May 2017, for the short-period eclipsing binary PS Vir, by using the 2.16-m,85-cm and 60-cm telescopes at Xinglong station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. The spectral type was determined as G2V from the onedimensional spectrum. The photometric solution was reduced from BV Rc light curves. The results imply that PS Vir is a W-subtype contact binary with a mass ratio of q = 0.305(±0.008) and a fill-out factor of f = 14.4(±1.8)%. The orbital period may be undergoing a cyclic oscillation with an amplitude of A = 0.0027(±0.0001) d and a modulated period of 11.7(±0.2) yr, which may result from the light-time effect due to a third body. The lower limit on mass for the assumed component is 0.12 M⊙.Moreover, the more massive component of PS Vir may be a bit more evolved star as determined from the mass-luminosity diagram.  相似文献   
8.
Dai  Erfu  Wang  Yahui 《地理学报(英文版)》2020,30(6):1005-1020
Ecosystem services, which include water yield services, have been incorporated into decision processes of regional land use planning and sustainable development. Spatial pattern characteristics and identification of factors that influence water yield are the basis for decision making. However, there are limited studies on the driving mechanisms that affect the spatial heterogeneity of ecosystem services. In this study, we used the Hengduan Mountain region in southwest China, with obvious spatial heterogeneity, as the research site. The water yield module in the In VEST software was used to simulate the spatial distribution of water yield. Also, quantitative attribution analysis was conducted for various geomorphological and climatic zones in the Hengduan Mountain region by using the geographical detector method. Influencing factors, such as climate, topography, soil, vegetation type, and land use type and pattern, were taken into consideration for this analysis. Four key findings were obtained. First, water yield spatial heterogeneity is influenced most by climate-related factors, where precipitation and evapotranspiration are the dominant factors. Second, the relative importance of each impact factor to the water yield heterogeneity differs significantly by geomorphological and climatic zones. In flat areas, the influence of evapotranspiration is higher than that of precipitation. As relief increases, the importance of precipitation increases and eventually, it becomes the most influential factor. Evapotranspiration is the most influential factor in a plateau climate zone, while in the mid-subtropical zone, precipitation is the main controlling factor. Third, land use type is also an important driving force in flat areas. Thus, more attention should be paid to urbanization and land use planning, which involves land use changes, to mitigate the impact on water yield spatial pattern. The fourth finding was that a risk detector showed that Primarosol and Anthropogenic soil areas, shrub areas, and areas with slope 5° and 25°–35° should be recognized as water yield important zones, while the corresponding elevation values are different among different geomorphological and climatic zones. Therefore, the spatial heterogeneity and influencing factors in different zones should be fully con-sidered while planning the maintenance and protection of water yield services in the Hengduan Mountain region.  相似文献   
9.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   
10.
Small‐area patch merging is a common operation in land use data generalization. However, existing research on small‐area patch merging has mainly focused on local compatibility measures, which often lead to area imbalances among land use types from a global perspective. To address the shortcomings of previous studies by resolving local and global concerns simultaneously, this article proposes a merging method that considers both local constraints and the overall area balance. First, a local optimization model that considers three constraints—namely, the areas of neighboring patches, the lengths of shared arcs, and semantic similarity—is established. The areas of small patches are first pre‐allocated. Subsequently, in accordance with an area change threshold for individual land use types, land use types with area changes that exceed this threshold are identified. The patches corresponding to these land use types are subjected to iterative adjustments while considering the overall area balance. Based on their area splitting abilities, the split lines for small‐area patches are determined, and small‐area patches are merged. Finally, actual data from Guangdong Province are used for validation. The experimental results demonstrate that the proposed method is capable of preserving the local compatibility of patches while balancing the overall area associated with each land use type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号