排序方式: 共有108条查询结果,搜索用时 62 毫秒
1.
利用先进的WRF中尺度模式中3种边界层参数化方案(YSU、 MYJ和ACM2), 模拟了2005年1月25~28日兰州市冬季地面温度和风速的变化, 并与同期系留探空和自动气象站的实测资料进行了对比分析。结果表明: 对兰州冬季大气边界层地面温度日变化的模拟, 局地闭合的MYJ方案优于非局地闭合的YSU和ACM2方案; 3种方案模拟的夜间位温廓线较好, 白天的较差; 在边界层低层, 考虑局地和非局地闭合的ACM2方案模拟的位温廓线与观测值比较一致; 在边界层上部, 局地闭合的MYJ方案则更适合于描述大气湍流对位温垂直分布的影响; 3种边界层参数化方案模拟的兰州地区冬季温度场空间分布特征相似, 但MYJ方案模拟的夜间温度低于YSU和ACM2方案, 白天则高于YSU和ACM2方案。 相似文献
2.
An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau 总被引:19,自引:2,他引:17
下载免费PDF全文

3.
通过对1954-2005年深圳高温天气及其环流背景的统计分析,探讨高温天气的气候特征及主要影响系统,并分析了不同天气系统影响下高温的空间分布特征,初步得出高温的预报流程。结果表明:①深圳夏季高温日数呈增多趋势;②西太平洋副热带高压是造成深圳高温天气的重要天气系统;③受热带气旋外围下沉气流控制是深圳出现高温的主要原因;④高温的空间分布具有明显的地域性,呈自北向南递减的趋势,南部气温比北部偏低。不同天气系统影响下,高温出现范围有很大差别。 相似文献
4.
5.
6.
干旱半干旱区气候变化研究综述 总被引:12,自引:0,他引:12
从干旱半干旱区气候的时空变化特征、陆气相互作用的观测试验以及气候变化的动力学机制等几个方面系统总结了近年来国内外干旱半干旱区气候变化的最新研究进展,指出目前干旱半干旱区气候变化研究以特定区域研究为主,缺乏对全球不同区域干旱半干旱区气候变化时空关联的系统性归纳研究,且野外观测试验持续时间较短,这在很大程度上限制了对干旱半干旱区气候变化机理的认识和陆面过程模式的发展。针对这些问题,从资料获取、资料分析及数值模拟3个方面提出未来干旱半干旱区气候变化研究的主要方向。 相似文献
7.
8.
通过WRF(Weather Research and Forecasting) 模式嵌套包含了高云和气溶胶辐射效应的大气边界层模式, 结合激光雷达资料, 进行数值模拟, 定量分析高云和气溶胶辐射效应对城市边界层的影响。模式能很好地模拟出在高云和气溶胶辐射效应下城市边界层的特征。夜间, 气溶胶在低层起到保温作用, 高云使得保温作用得到加强, 地表增温达1.5 K。中高层, 气溶胶降低所在气层温度, 高云使得降温幅度减少, 降温达0.2~0.7 K。白天, 高云和气溶胶减少到达地面的太阳短波辐射, 导致低层温度降低, 地表降温达1.3 K。中高层, 气溶胶加热所在的气层, 高云使得这一增温幅度减少, 在500 m处增温最大, 达0.85 K。无论白天还是夜间, 气溶胶的辐射效应都会抵消一部分形成山谷风的热力条件, 使得中低层的风速减少, 这种影响在白天显得尤为明显。高云的存在使得这种抵消得到少量的补偿。 相似文献
9.
作者着眼于城市气溶胶辐射效应与大气边界层的相互作用问题,针对地形复杂的兰州市及周边地区,开发应用了WRF(Weather Research and Forecasting,天气研究和预报)模式,使之与包含了大气气溶胶辐射效应和气溶胶粒子扩散的综合大气边界层数值模式嵌套起来。通过个例分析,揭示了冬季气溶胶辐射效应对边界层结构的定量影响。主要特征为夜间气溶胶的长波辐射效应使地面附近的气温增高,增温幅度为0.1~0.3 K/h,使低空(25~300 m)大气层冷却,降温幅度为0.08~0.15 K/h,风速在150 m以下减小;白天气溶胶的短波辐射效应使地面层内明显增温,1 h内升温约0.5 K,增温最大值在混合层顶500~600 m高度。受增温影响,垂直风场和水平风场随之调整,风速在450 m以下增大约0.1 m/s左右,而在450 m以上风速减小0.1 m/s左右。 相似文献
10.
采用济南和青岛1999-2011年的降水、高空和地面观测资料,研究了山东冬半年降水相态与影响系统的关系及温度垂直变化特征,获得不同降水相态的温度预报指标.结果表明:(1)降水相态变化与影响系统有关,江淮气旋和回流形势产生的大雪以上强降雪存在雨雪转换,低槽冷锋、黄河气旋和切变线(低涡)多产生中雪以下直接降雪.(2)无相态变化的降雪过程一般发生在温度较低、垂直变化单一的条件下,850 hPa以下各层均有明显温度阈值.(3)有相态转换的降雪过程中,850和925 hPa的温度对于雨、雪、雨夹雪的识别没有明显指示性,1000 hPa以下的温度最为关键,将925 hPa以下各层与地面的温度结合起来判别相态,较使用单一特性层温度更为可靠;冰粒区别于其他降水类型,在温度场上的显著特征为700 hPa的温度较高.(4)0℃层高度可用于雨雪转换指标:降雨时0℃层高于925 hPa或在925 hPa上下,当0℃层的高度降至1000 hPa上下时转为降雪.(5)雨夹雪和冰粒发生在有雨雪相态转换的降水过程中,为过渡形态,不会单独出现. 相似文献