首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   3篇
测绘学   1篇
大气科学   3篇
地球物理   1篇
  2018年   3篇
  2017年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
WRF模式对青藏高原那曲地区大气边界层模拟适用性研究   总被引:2,自引:0,他引:2  
采用WRF(Weather Research and Forecasting)模式4种边界层参数化方案对青藏高原那曲地区边界层特征进行了数值模拟,并利用"第三次青藏高原大气科学试验"在青藏高原那曲地区5个站点的观测资料对模拟结果进行验证,分析不同参数化方案在那曲地区的适用性。研究表明,YSU、MYJ、ACM2和BouLac方案对2 m气温和地表温度的模拟偏低。BouLac方案模拟的地表温度偏差较小。通过对能量平衡各分量的对比分析发现,温度模拟偏低可能是向下长波辐射模拟偏低以及感热通量和潜热通量交换过强导致的。对于边界层风、位温和相对湿度垂直结构的模拟,局地方案的模拟效果均优于非局地方案。BouLac方案对那曲地区近地层温度、边界层内位温和相对湿度的垂直分布模拟效果较好。   相似文献   
2.
基于半干旱区2种不同下垫面(草地和旱作农田)2005和2008年涡动相关法取得的通量资料,分析了数据填补、能量收支闭合率以及摩擦风速(u*)阈值等对生态系统年净碳交换的影响.通过加入4种不同长度的人工空缺(空缺长度从0.5 h~12 d),比较了平均日变化法(MDV)、边缘分布抽样法(MDS)和非线性回归法等6种填补方法的填补效果.结果表明,MDS的整体表现最好,特别是对长空缺的填补效果优于其他方法,估算的年NEE偏差在5 g C m-2 a-1以内.非线性回归法估算的夜间NEE具有较大的正偏差,表明非线性回归法估算的夜间生态系统呼吸偏高.4种非线性回归法估算的年NEE偏差在8.0~30.8g C m-2 a-1.由于在半干旱区土壤含水量是生态系统碳交换的重要限制因子,非线性回归法中综合考虑土壤温度和土壤含水量影响的Non_linear3和Non_linear4表现较好.MDV对白天NEE空缺的填补优于夜间,估算的年NEE偏差在-2.6~-13.4 g C m-2 a-1.总体上,数据填补的精确度受下垫面类型、空缺长度以及空缺出现时间(白天、晚上)影响.2个观测站点的能量收支闭合率在80%左右.能量收支闭合率受湍流强度影响显著;当夜间摩擦风速较低时,湍流混合不充分,能量收支闭合率也较低.生态系统在某个风向的累积通量印痕较大时,有效能量和湍流通量源区的不匹配造成这一风向上的能量收支闭合率也较低.通过假设能量收支不闭合全部由感热通量和潜热通量的低估引起,评估了能量闭合订正对生态系统CO2通量的影响.结果表明经过订正后的草地、农田的年净碳交换量平均增加近10 g C m-2 a-1.此外当u*阈值从0.1增加到0.2 m s-1,年净碳交换平均增加37.5 g C m-2 a-1,这表明u*阈值的设定对生态系统的年净碳交换影响较大.  相似文献   
3.
刘辉志  王雷  杜群 《大气科学》2018,42(4):823-832
本文总结了2012~2017年中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室大气边界层物理研究的最新进展,主要包括不同下垫面(城市、青藏高原、草原、沙漠、湖泊、海洋等)大气边界层观测实验、大气湍流和阵风相干结构的理论研究以及大气数值模拟的参数化改进等,同时对未来几年内大气边界层物理的发展方向做了展望。  相似文献   
4.
当前,我国大陆地区国家公园体制建设正在稳步推进,由于缺乏中央层面的国家公园立法的指导,已出台的国家公园地方条例在管理体制、集体土地权属处理以及特许经营等方面都存在一定的问题。我国台湾地区早在1972年就制定了《国家公园法》,并与其他相关法律形成了完整的"国家公园"立法体系。本文对台湾地区的自然保护地体系和"国家公园"立法进行简要梳理,分析其管理体制、土地权属与征收、利用管制等有益经验,以期对大陆地区国家公园体制建设提供借鉴。  相似文献   
5.
利用北京中国科学院大气物理研究所325 m气象观测塔的气象梯度资料和湍流资料,分析了2014年11月29日至12月5日北京两次大风过程中气象要素和湍流输送特征的变化。第一次大风过程的强度和持续时间均高于第二次大风过程。强烈的风速垂直切变主要集中在距地面100 m高度范围内,最强风速垂直切变达到0.31 s~(-1)。大风过程中,阵风系数呈现随高度减小的趋势,越接近地面,阵风系数愈大。阵风强度的变化与阵风系数相似,100 m以下高度时,阵风强度随高度增大而减小。大风过程自上而下改变边界层结构,平均动能、湍流动能和摩擦速度最先从上层(280 m)发生变化且迅速增加。近地层由于风速垂直梯度的显著差异,近地层垂直方向的湍流强度最大。大风时各功率谱在低频区(0.01 s~(-1))达到峰值,大风过后各高度的能量都有所下降。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号