首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   3篇
大气科学   5篇
  2022年   1篇
  2019年   2篇
  2018年   2篇
排序方式: 共有5条查询结果,搜索用时 234 毫秒
1
1.
为了进一步了解青藏高原闪电的产生氮氧化物(LNOx)经由光化学反应对O3浓度变化及夏季O3低谷形成的可能影响,本文利用2005~2013年由OMI卫星得到的对流层NO2垂直浓度柱(NO2 VCD)、O3总浓度柱(TOC)和O3廓线以及星载光学瞬变探测器OTD和闪电成像仪LIS获取的总闪电数资料,对青藏高原和同纬度长江中下游地区的TOC和NO2 VCD月均值时空分布特征、闪电与NO2 VCD的相关性和O3的垂直分布特征及其与LNOx的关系进行了对比分析。结果表明,青藏高原的O3低谷主要出现在夏季和秋季,其TOC值比同纬度长江中下游地区低约10~15 DU(Dobson unit)。青藏高原NO2VCD总体较小,表现为夏高冬低的分布特征。青藏高原夏季O3浓度受南亚高压的影响总体呈减小趋势,但因强雷暴天气导致对流层中上部LNOx浓度升高,并随强上升气流向对流层顶输送,同时通过光化学反应使O3浓度增加,缩小了青藏高原和同纬度地区的O3浓度差,减缓了O3总浓度的下降,抑制了夏季O3低谷的进一步深化。  相似文献   
2.
采用三维雷暴云动力-电耦合数值模式,模拟了2015年7月17日广东清远一次系统性强雷暴过程,探究此次雷暴的宏微观及电活动特征,从微物理角度出发,分析电荷结构的复杂成因。结果表明,由于水汽充足,上升气流速度大,云体高度高,小粒子随着强上升气流快速上升,迅速增长为雨滴等大粒子,降水出现早,强度大,较高的气温,使得很难产生固态降水。本次过程中,电荷结构由三极性结构逐渐演变成偶极性结构,这是由于霰的自动转化作用较强,中层霰粒在雷暴云成熟期转化为雹下落,上升气流由于强降水的发生不能维持,冰晶和霰粒子分布区域重合面积减少,非感应起电减弱,使得下部电荷结构消散。较高的电荷区高度使得云闪数目远远多于地闪数目。   相似文献   
3.
利用三维雷暴云动力-电耦合数值模式,通过对青藏高原地区2003年8月13日一次雷暴过程进行模拟,分析了高原雷暴的电荷结构特征并从微物理角度讨论了其主要形成原因。结果表明,高原雷暴以三极性结构为主,在消散阶段电荷结构转变为偶极性,结构整体电荷密度较小,主正电荷区与主负电荷区深厚,下部次正电荷区范围较大,持续时间较长。其中三极性结构主要是由于云内冰相粒子通过非感应起电机制作用形成;后期偶极性构是由霰粒子下落固态降水的增强导致。云内暖云区厚度较小,混合相区域内有效液态水含量较高,对流层顶较低,导致冰晶、雪所在的高度更低,与霰、雹这样的大粒子重合的区域更大,形成了下部范围较大持续时间较长的正电荷区。  相似文献   
4.
雨滴谱包含了降雨的丰富信息,不仅能反映雨滴群的微物理特性,也能反映降雨类型、降雨强度等宏观特性,并且在雷达气象领域也有重要的价值。论文对2015和2016年度南京地区32次降雨过程的雨滴谱资料进行了处理、并对多种雨滴参数进行了详细的统计和分析,拟合了层状云降雨、对流云降雨以及积层混合云降雨的雨滴谱Gamma分布参数。另外,还基于雨滴谱数据拟合了雷达反射率因子Z与降雨强度R的Z-R关系,计算了差分反射率ZDR、相位常数KDP以及衰减参数,并利用衰减参数进行了C波段雷达回波的衰减订正试验。结果表明:(1)层状云降雨的各微物理参数比较稳定,积雨云的变化剧烈;层云降雨和积层混合云降雨的中雨滴、积雨云降雨的大雨滴对雷达反射率因子的贡献最大。(2)积雨云降雨的滴谱最宽,层状云降雨的最窄。(3)利用依据雨滴谱数据拟合的三类降雨Z-R关系,可以一定程度地提高雷达估测降雨的精度。(4)利用基于雨滴谱数据拟合的衰减系数,有效地进行了C波段双偏振雷达回波强度的衰减订正,体现了统计参数和拟合参数准确性。  相似文献   
5.
本文利用OTT Parsivel2激光雨滴谱仪和站点加密观测资料,对2019年11月29日张家口地区一次长时间降雪天气过程的滴谱演变特征进行了初步分析,本次降雪先后经历开始阶段、雪花阶段、稳定强降雪阶段、结束阶段。结果表明:(1)总体上,降雪天气过程中微物理参量(降雨强度R、数浓度Nt、雨水含量W、雷达反射率因子Z、质量加权平均直径Dm)演变趋势基本相同,其中开始阶段、稳定强降雪阶段、结束阶段的降水强度、雨水含量、雷达反射率因子受粒子数浓度影响较大,而雪花阶段降水强度、雨水含量、雷达反射率因子受粒子直径影响较大。(2)稳定强降雪阶段,粒子数浓度Nt量级为103至104,而Dm小于1 mm,这是由于大雪片在温度较低的情况下,下落过程中破碎形成大量小雪片。降雪过程中,雪滴下落速度小于2 m/s的粒子数占总粒子数的90%,强降雪阶段的雪滴下落速度集中于1~1.5 m/s。(3)分别使用二、三、四阶矩和最小二乘法对不同降雪阶段粒子谱进行Gamma分布拟合,在降雪过程中,最小二乘法拟合效果优于二、三、四阶矩方法。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号