全文获取类型
收费全文 | 1085篇 |
国内免费 | 538篇 |
完全免费 | 154篇 |
专业分类
大气科学 | 1777篇 |
出版年
2019年 | 3篇 |
2018年 | 90篇 |
2017年 | 71篇 |
2016年 | 74篇 |
2015年 | 109篇 |
2014年 | 170篇 |
2013年 | 137篇 |
2012年 | 133篇 |
2011年 | 126篇 |
2010年 | 134篇 |
2009年 | 130篇 |
2008年 | 97篇 |
2007年 | 93篇 |
2006年 | 26篇 |
2005年 | 17篇 |
2004年 | 15篇 |
2003年 | 19篇 |
2002年 | 23篇 |
2001年 | 3篇 |
2000年 | 24篇 |
1999年 | 3篇 |
1998年 | 11篇 |
1997年 | 29篇 |
1996年 | 25篇 |
1995年 | 14篇 |
1994年 | 26篇 |
1993年 | 31篇 |
1992年 | 25篇 |
1991年 | 34篇 |
1990年 | 19篇 |
1989年 | 17篇 |
1988年 | 11篇 |
1987年 | 8篇 |
1986年 | 8篇 |
1985年 | 6篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1982年 | 5篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有1777条查询结果,搜索用时 31 毫秒
1.
2.
3.
近40年青藏高原东侧地区云、日照、温度及日较差的分析 总被引:20,自引:20,他引:44
统计分析了半个世纪以来,气候变冷区域青藏高原东侧地区云,日照,温度和日较差的变化及相互关系。结果表明,青藏高原东侧地区气候变化具有显著的区域特征,总云量与日照比全国平均情况有更密切的反相关系,并且都与日较差有很好的线性相关。在春,夏季,它们都与温度有,但秋,冬季相关不明显。最后指出了云和日照可能是青藏高原东侧地区春,夏季温度变化的重要原因,而秋,冬季则与亚洲范围大气环流及青藏高原影响等有关。 相似文献
4.
根据1971~2010年567个中国地面观测站点的雾日数和霾日数资料,分析了我国雾日数和霾日数的空间分布、季节变化以及年代际变化特征,并且利用REOF(旋转经验函数正交)分解对雾日数进行气候区划。结果表明:(1)雾主要分布在东南沿海地区、四川盆地地区、湘黔交界、山东沿海以及云南南部等地区。霾主要集中于华北、河南以及珠三角和长三角地区。(2)在季节变化上:秋、冬季雾和霾的分布大于春夏。(3)雾日数和霾日数年代际变化明显,雾日数在20世纪70至90年代较多,20世纪90年代以后减少;霾日数自2001年以来急剧增长。(4)雾日数可以共可分为10个区,其中华北区、川渝区以及长江中下游区是雾出现频率较高的几个重点区域。 相似文献
5.
6.
青藏高原东侧陡峭地形对一次强降水天气过程的影响 总被引:19,自引:19,他引:11
利用高分辨率中尺度模式分析资料,研究了青藏高原东侧陡峭地形对一次暴雨天气发生发展的影响。结果显示,青藏高原地形对大气环流的动力阻挡作用形成了本次暴雨过程的水汽输送通道,青藏高原东侧陡峭地形结构造成了四川西北部和黄河上游的强水汽辐合中心,并使低层高能舌和能量锋区位于海拔较低的四川盆地,在四川盆地对流层低层建立起位势不稳定层结。青藏高原东侧陡峭地形结构引起了低层偏东气流强烈的垂直上升运动,最强的垂直上升运动出现在东西风垂直切变与陡峭地形交汇处,激发不稳定能量释放,促使强对流猛烈发展,暴雨过程中高原东侧还有一个中尺度涡旋的发生发展相伴。青藏高原东侧暴雨区最显著的热力特征是高温高湿区域仅出现在对流层低层,最显著的动力特征是强涡度柱也仅出现在对流层低层。 相似文献
7.
高原东侧一次大暴雨过程动力热力特征分析 总被引:16,自引:16,他引:4
2006年7月6~7日高原东侧发生了一次区域性暴雨过程,与以往高原东侧暴雨过程概念模型不同的是,这次暴雨过程中没有出现低空急流,在暴雨强盛阶段伴有全风速增强。本文采用诊断分析方法,从暴雨发生所需的热力、水汽及动力条件入手,采用相当位温、水汽通量、视热源和视水汽汇、湿位涡等几个物理量对这次暴雨过程进行综合分析,以揭示了暴雨发生、发展的机制。西南涡与高温、高湿的大气条件相配合,高低空风的垂直切变及来自孟加拉湾的充沛水汽输送和辐合,为该暴雨过程提供了有利的条件。这次暴雨以对流性降水为主,视热源和视水汽汇的垂直输送作用是加热的主要贡献项,而局地变化项和平流项有相反的变化特征,其共同作用是减小对加热的贡献;该过程中湿斜压性是位涡的主要贡献项,湿位涡的演变与暴雨发展有很好的对应关系,湿位涡最大值与暴雨峰值出现时间一致,位势不稳定对触发暴雨的作用也不可忽视。 相似文献
8.
青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验 总被引:14,自引:14,他引:9
使用η模式对1995年8月24日四川盆地西部一次突发性暴雨进行了数值模拟和无高原切变线、无西昌小高压的数值试验。由试验结果分析得出:(1)高原切变线活动可使四川盆地西部暴雨增强,而西昌小高压的存在则便四川盆地西部暴雨减弱;(2)高原切变线活动使暴雨增强的主要机制是暴雨区上空对流层低层流场辐合、上升运动、正涡度、水汽通量辐合和对流层中层流场辐合、水汽通量辐合等的加强;(3)对流层低层的动力、水汽条件 相似文献
9.
青藏高原东部及邻近地区水汽输送的气候特征 总被引:14,自引:14,他引:34
利用1980—1997年垂直积分的整层水汽输送通量资料,分析了青藏高原东部及其邻近地区水汽输送的气候特征。结果表明,该区的水汽输送具有明显的季节变化特征:冬、春季的水汽主要来源于中纬度的偏西风水汽输送,夏季(7月)主要来源于孟加拉湾和南海,秋季(10月)主要来源于西太平洋地区。季风携带的南来水汽在高原东侧地区的进退比较缓慢,8月初北扩到40°N附近,10月中旬南退出30°N,其强弱和进退异常能影响极端旱涝事件的发生。来自南海、西太平洋地区的水汽输送对高原东部及其邻近地区的影响值得关注。 相似文献
10.
低涡与急流对"04.9"川东暴雨影响的分析与数值模拟 总被引:11,自引:11,他引:11
2004年9月3日~5日川东出现了大范围的强暴雨过程,本文分析了这次暴雨过程的云图特征和环流形势,并利用MM5中尺度数值模式对本次暴雨进行了二重嵌套模拟,分析及模拟结果表明,本次降水过程与中尺度云团、高低空急流和对流层中低层涡旋活动密切相关,同时还与副热带高压活动和“桑达”台风活动相关。盆地涡出现在低空急流的左侧,而川东强降水发生在高空急流的南面、低涡东南侧与西南低空急流大风出口区之问。盆地正涡度维持有利于盆地上空垂直上升运动的发展和维持,对暴雨的发生提供了动力条件。垂直上升运动是高低空急流和盆地涡联系的纽带,也是盆地涡动力驱动的结果。分析结果还表明,西南低空急流在暴雨出现前建立,暴雨和盆地涡同时出现,而暴雨、低空急流和盆地涡几乎同时减弱。高空急流在过程前和过程中是逐步加大,当高空急流出现剧减时,预示暴雨即将结束。 相似文献