首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
  国内免费   8篇
大气科学   18篇
地质学   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2017年   3篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
利用寿县观测站内的Parsivel激光雨滴谱仪结合观测站雨量数据及雷达基数据,分析了发生在2015年6月26—30日梅雨期间和2015年8月7—10日超强台风"苏迪罗"影响期间2次强降水过程的雨滴谱结构特征及其差异,拟合了雨强与雷达反射率因子之间的关系。结果表明:雨强的大小直接影响雨滴谱的特征参量,且随着雨强增大而增大;梅雨锋暴雨中1.0mm直径≤1.5mm的粒子所占比例最多,雨强贡献率最大;台风雨中0.75mm直径≤1.0mm的粒子所占比例最多,但1.0mm直径≤1.25mm的粒子对雨强的贡献最大,说明较大粒子对强降水的贡献较大。  相似文献   
2.
基于2015年6月淮河流域卫星遥感监测火点信息、环境空气质量监测数据和常规气象观测资料,利用ANUSPLIN和ArcGISKriging方法对气象要素和主要大气污染物浓度空间栅格化,分析了秸秆焚烧关键期内AQI和主要污染物浓度的时空变化特征及其与气温、相对湿度、风速等气象要素的相关关系。结果表明:秸秆焚烧关键期内,淮河流域城市AQI、PM10与PM2.5浓度均明显升高,且与卫星监测火点具有一定时空响应关系。在时间变化上,AQI、PM10与PM2.5浓度6月上中旬呈波动上升,6月下旬趋于回落;在空间分布方面,AQI、PM10与PM2.5浓度三者分布形态相似,总体上呈现"南低北高、两高一低"分布特征;期间AQI、PM10与PM2.5浓度与气温呈显著正相关,与相对湿度呈显著负相关,与风速的相关性不显著。  相似文献   
3.
基于美国AMF寿县观测的云特性研究   总被引:2,自引:0,他引:2  
美国能源部大气辐射观测计划移动观测ARMAMF(atmospheric radiation measurement mobile facility)2008年首次在我国寿县开展综合观测,为研究云特性提供了很好的资料平台。本文在此次云雷达等观测资料基础上,研究了寿县秋末冬初云高、云厚、云量及其辐射特性,结果发现,寿县有76.3%的观测日有云出现,54.0%的观测时间有云覆盖,中云(以下简称M云)和高云(以下简称H云)出现频率占全部云系的76.7%,天气系统对寿县云系形成有较大影响;云底高度大于3km的降水性云(以下简称P云)出现频率占全部P云的67.7%,是云底高度小于3kmP云的5.3倍,发生在下午的降水占全部P云的47.8%,气溶胶可能对P云的这种分布有较大影响;云和气溶胶减少地面短波辐射的日均值达一99.1W/m。,其中气溶胶减少约占25.1%。不同高度和厚度云对地面辐射通量的影响有较大差异,P云产生最大的冷却效应(一201.9W/m。),厚度小于2km的H云对地面辐射通量的减少量最少(一32.9w/m。)。另外,用地面单点云辐射观测与中分辨率成像光谱仪MODIS(moderate resolution imaging spectroradiometer)资料估计结果对比发现,两种资料有较大差异,差异可达-1.9~-36.9W/m。  相似文献   
4.
综合利用中国环境监测网公布的合肥市2013-2015年大气污染物浓度数据和合肥市气象站的常规气象资料,以及激光雷达探测资料、公益性行业(气象)专项(GYHY201206011)获得的气溶胶离子成分分析结果,分析了合肥市PM2.5重污染(日均浓度>150 μg/m3)特征。结果表明:(1)2013-2015年,合肥市PM2.5浓度和重污染天数空间分布差异明显,东北部多、西南部少,1月各站差异最大。除了低浓度日(日均浓度≤35 μg/m3),PM2.5浓度都存在明显的日变化,午后低、早晚高,且随着污染程度加重,早上峰值出现时间推后。(2)重污染日臭氧以外的气态污染物浓度都显著上升。(3)重污染日常伴随着霾和轻雾天气,以稳定、小风天气为主,重污染日白天相对湿度偏高、风速偏小,600 m以下的消光系数显著增大且峰值高度降低。(4)重污染日PM2.5中水溶性无机离子含量增高,其中NO3-含量的占比增加最多,超过了SO42-的占比。   相似文献   
5.
根据强浓雾发生的同步性,可将安徽分为5个不同的区域。为了解安徽区域性强浓雾的演变规律及成因,首先利用1980—2019年安徽省68个资料完整的国家级气象观测站08时能见度、相对湿度和天气现象资料,探讨了各区域区域性强浓雾的判定标准,建立各区域40 a的区域性强浓雾日时序资料,分析了区域性强浓雾的年际和年代际变化趋势;然后利用2016—2019年77个国家级气象观测站逐时资料分析了不同区域区域性强浓雾的年变化、日变化及持续时间分布等特征;最后,探讨了冬季区域性强浓雾年际变化的成因。结果表明:(1)1980—2019年,沿淮淮北3个区域区域性强浓雾日数都有先升后降的变化趋势,转折点在2006/2007年;1980—2007年区域性强浓雾日数呈明显的上升趋势,应归因于气溶胶粒子浓度升高。年代际比较,各区域区域性强浓雾日数都是20世纪90年代或21世纪最初10年最多,21世纪第2个10年最少;各区域区域性强浓雾出现日数年际变化大,最少的年份0—1 d,最多年份可超过10 d。(2)2016—2019年,各区域年均区域性强浓雾日数14—17 d,主要集中在仲秋到仲春;持续1 h的强浓雾日占比最高,持续3 h的样本是另一个峰值;淮河以北2个区域年均区域性强浓雾日数最多、且持续时间达到3 h及以上的区域性强浓雾占比最高。(3)淮河以北冬季区域性强浓雾日数与降水日数、降水量、相对湿度和08时气温均呈较为显著的正相关,而与风速和小风日数相关不显著;沿江地区冬季区域性强浓雾日数主要受地面风速影响;而江南冬季强浓雾日数与各地面因子均不存在明显相关。(4)以1月为例,各区域区域性强浓雾日数都与纬向环流指数呈正相关,沿淮淮北3个区域区域性强浓雾日数都与东亚槽位置呈正相关,而与东亚槽强度相关不明显。说明纬向型环流、东亚槽位置偏东有助于安徽沿淮淮北形成强浓雾。进一步分析发现,雾多的1月海平面气压中40°N以北的1030 hPa等值线位置偏东(如在120°E以东),近地层偏东风较强,地面湿度偏高。   相似文献   
6.
丁一汇  胡雯  黄勇  陈凤娇 《气象学报》2020,78(5):721-734
1998和1999年夏,中国与日本科学家合作在安徽省淮河流域进行了第一次大规模的能量与水循环试验(WCRP/GEWEX/GAME/HUBEX),其重点是研究东亚梅雨锋系的多尺度,多系统结构、特征、生命史、发生发展机理及其引起洪涝灾害的原因。这是第一次中日合作的气象与水文联合观测试验,在此加强观测的基础上,双方进一步进行了长达5年的资料整理分析和科学研究工作,整个淮河流域能量与水循环试验与研究取得了全面和丰硕的成果。文中介绍了该计划所取得的主要成果,并以现在科学进展的视野重新评估这些成果的科学意义和不足,为进一步开展新的淮河与长江中下游梅雨科学联合试验提供经验和新的研究目标。   相似文献   
7.
赵倩  周后福  单乃超 《气象科学》2019,39(5):704-710
本文基于合肥地面观测、机场自动观测系统(AWOS)、多普勒雷达、探空及FNL 0.25°×0.25°等资料,分析了2015年8月6日合肥一次较强风切变天气过程,并对其形成机理进行研究。结果表明:低空风切变发生前,肥西地区不稳定能量及上升气流较为活跃,有利于对流云团的发展。地面自动气象站的观测资料表明,低空风切变发生时,近地层的风向、风速和温度等气象要素均有突变;风暴的质心高度、最强回波高度和风暴顶高迅速下降,空中气流快速下沉,至近地面向四周辐散,因此该风暴属于下击暴流性质;径向速度图中明显的正负速度对也印证了低空剧烈的风向和风速切变。  相似文献   
8.
雾和霾都是低能见度天气,生成条件相似。利用安徽78个地面站逐时观测资料,基于雾、霾发生物理条件,建立了不同等级雾日和重度霾日的观测诊断方法,重建了不同等级雾和重度霾的时序资料。根据各站强浓雾发生的同步性,将安徽分为5个雾、霾分布特征不同的区域,探讨了各区域不同等级雾及重度霾出现时地面气象条件的异同。结果表明:(1)安徽省强浓雾主要是辐射雾。强浓雾、浓雾和大雾空间分布形势大体一致,淮河以北东、西部和江南都属于强浓雾高发区,但各地强浓雾的时、空分布特征和影响系统不同;重度霾有明显的北多、南少、山区最少的分布特征。(2)强浓雾年变化呈双峰型分布,峰值在1月和4月,日变化为单峰型,峰值在06时;而重度霾年变化为单峰型,峰值在1月,日变化为双峰型。(3)在强浓雾的高发时段(02—08时),强浓雾时降温幅度最大,比重度霾平均高1℃,风速显著偏低,超过75%的样本风速低于1.5 m/s,且无明显主导风向;而重度霾时,风速比雾时明显要大,个别区域有超过75%的样本风速大于1.5 m/s,且以西北风到东北风为主。说明重度霾能否演变为强浓雾的关键地面气象因子是风速、风向和降温幅度。   相似文献   
9.
利用地面、探空、机场自动观测、多普勒雷达等资料,以多普勒雷达数据产品为重点,对合肥机场及周边地区一次雷暴大风的成因进行了分析。结果表明:机场西北部两个对流风暴在3—6 km高度层合并,5 km高度处形成强反射率因子核,强反射率因子核高度10 min内迅速下降4 km,风暴内下沉气流在地面形成强冷池,强冷池的快速移动导致机场大风形成。下沉气流产生的初始原因是降水粒子的下降拖曳作用;吸入作用、水成物与环境间的负浮力增大、动量下传、补偿性气流的作用是下沉气流产生的重要原因。机场西南部的大风带由雷暴出流边界过境造成,出流边界破坏了边界层结构导致超折射现象的消失。风暴后部持续的冷空气补充和风暴前部源源不断的上升气流维持稳定的垂直环流,持续的下沉补偿气流导致机场东部大风的长时间维持。  相似文献   
10.
利用2016年12月14日—2017年1月3日安徽寿县国家气候观象台大气边界层垂直探测资料、地面自动气象站资料、污染物浓度资料及天气图资料,对该地区两次重污染的积累和清除过程进行了分析,得到以下结论:1)两次重污染过程均起源于地面弱风(风速3 m/s)、高湿(相对湿度80%)等不利气象条件,导致污染物局地积累。再通过大风、降水、大雾过程等有利的扩散、沉降条件,对污染物进行清除。2)天气形势在重污染积累过程中起到了重要作用。主要特征表现为,高低空层结稳定,且低空处于湿区内部,多受暖舌控制或伴有暖平流。第一次重污染清除过程中,控制寿县地区的天气系统逐渐转变为低压,风向转为偏东风,并伴有降水天气。第二次污染物清除过程,则是大雾湿沉降和逆温层消除共同导致。3)重污染积累过程中边界层高度均偏低,最大高度也仅为500 m,对污染物垂直扩散范围有所限制,进而影响局地污染物浓度。重污染过程逆温现象多发,近地层逆温主要发生在夜间和清晨,逆温强度最强可达3℃/(100 m),污染物在逆温层低层和底部之下堆积。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号