首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   10篇
  大气科学   13篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
排序方式: 共有13条查询结果,搜索用时 328 毫秒
1.
加热和水汽对两例高原低涡影响的数值试验   总被引:7,自引:6,他引:1       下载免费PDF全文
利用卫星黑体亮度温度 (TBB) 资料、NCEP 1°×1°再分析资料以及中尺度非静力平衡模式MM5, 对2005年7月28~29日和2009年7月29~31日两次高原低涡过程进行了控制试验以及绝热、无地表感热、地表感热加倍、无蒸发效应、无凝结潜热、无水汽等六组敏感性试验, 着重讨论了2005年7月28~29日高原低涡发生、发展及结构特征演变。结果表明: 控制试验模拟出的500 hPa低涡中心位置和低涡结构与实况基本吻合。绝热条件对低涡形成、 发展及结构变化的影响最为显著; 凝结潜热、水汽对低涡的形成不具有决定性影响, 但对低涡的维持以及结构特征演变起关键作用; 地表蒸发潜热对低涡的发展有一定影响, 无地表蒸发潜热使低涡的强度略有减弱; 地表感热对低涡的影响因个例不同而有所差异, 并且在低涡的不同发展阶段也不尽相同, 另外还与低涡发展阶段是在白天还是夜晚有关。  相似文献
2.
基于NCEP资料的近30年夏季青藏高原低涡的气候特征   总被引:6,自引:3,他引:3       下载免费PDF全文
基于NCEP/NCAR再分析资料并通过人工识别与天气图对比,本文对1981~2010年夏季高原低涡的气候特征进行了统计分析,对比研究了高原低涡高发年和低发年的大气环流场和低频分量场的特征,主要结果有:(1)近30年来夏季高原低涡平均每年生成32个,低涡发生频数呈现较明显的增多趋势,并具有较强的年际变化特征,低涡频数在2000年和2005年出现显著突变,在2000年由增多趋势转为减少趋势,在2005年又转为增多趋势,同时低涡频数具有显著的准5年、准9年和准15年周期振荡,6月生成的高原低涡呈减少趋势,而7月和8月生成的高原低涡均呈现增多趋势;(2)夏季高原低涡生成源地主要集中在西藏双湖、那曲和青海扎仁克吾一带,其中高原中部涡占50.8%,西部涡占27.0%,东部涡占22.2%,6月、7月和8月生成的高原低涡分别占夏季低涡总数的44.7%、29.9%和25.4%,高原低涡生成时绝大多数为暖性涡,占总数的90.7%。近30年来平均每年夏季有1.3个高影响高原低涡移出高原并在下游大范围地区产生强降水天气;移出的高原低涡以东移为主,占移出高原低涡的56.4%,而东北移和东南移的分别占移出高原低涡的20.1%和20.5%;(3)高原低涡高发年,低层的大气环流场和低频大气环流分量场均表现出较强的水平辐合及偏南气流,高层的青藏高压在高原主体范围内较气候态偏强;高原低涡低发年的情况则与之相反,伊朗高原上空的气旋、青藏高原低槽和高原南侧反气旋的配置对高原低涡的发生具有重要作用。  相似文献
3.
成都精细下垫面信息对城市气象影响的模拟试验   总被引:5,自引:1,他引:4       下载免费PDF全文
肖丹  陈静  陈章  张波 《气象》2011,37(3):298-308
为了提高成都市精细化天气预报水平,使用成都地区精细下垫面土地利用资料,在WRF中耦合了单层城市冠层模式,对2008年7月6 日晴空背景下的成都城市气象特征进行了模拟,并和使用旧土地利用资料、slab模式的模拟结果进行了对比分析.模拟结果表明城区因为不透水下垫面的增加,使得地表蒸发和地表水汽通量显著减小,潜热通量减小,感热通量增大;城市建筑物对长波辐射有截获作用,使城市湍流作用增强,边界层高度增高;使用精细下垫面资料和单层城市冠层模式,模拟的2m温度负偏差和均方根误差减小;城市面积扩大和建筑物增多,使城市热岛效应增强,城区10m风速减小,城市下风方垂直环流增强.  相似文献
4.
成都地区降水时空分布变化   总被引:1,自引:0,他引:1       下载免费PDF全文
分析成都地区12个气象观测站50年(1960—2009年)逐日降水资料的时空分布变化规律得出:成都地区年降水量、汛期有雨日降雨强度、最大日降水量均呈现出逐渐下降的趋势。降水量主要集中在夏季,盛夏7、8两个月降水量占全年降水总量的47%;降水空间分布的主要类型为东—西走向,即降水量的地区分布趋势是西部多于东部;对降水量的M-K突变检验表明,大部分地方存在年降水总量的突变。  相似文献
5.
利用WRF三维变分同化系统,同化GPS掩星折射率资料,对2012年4月30日的强对流天气进行同化试验,分析同化折射率资料对于我国春季大范围强对流天气模拟的影响。结果表明:通过同化GPS掩星观测资料,可以明显调整和改善分析场的风、温度和湿度,其中,温度场的调整集中在我国北方地区850hPa以上的高度层;水汽的调整以中低层大气负的调整为主,最大可达-0.89g/kg;中纬度地区的高层风场都有明显的改善。青藏高原以风场调整为主,增加了西北风的分量,温度场也有改善。从模式结果对比发现,同化GPS掩星折射率资料,对高原稀疏的云团以及锋面云系有更好地描述;由于较准确地描述了低层的风场信息,模式对成都双流机场区域的小时降水量模拟也有较好效果。  相似文献
6.
利用ncep 1°×1°再分析资料和地面加密自动站资料,采用动力诊断分析方法,对2008年9月22~ 26日发生在四川盆地西北部连续性暴雨的形成机制进行探讨.分析表明:连续性暴雨天气过程前期(对流性降水阶段),湿位涡正负区叠置的形式有利于低层气旋式辐合发展,强降水出现在对流层中下部MPV1 <0和低层MPV2>0的范围内,而MPV1负值中心和MPV2正值中心及其包围的密集区,是暴雨产生的警戒区.后期(稳定性降水阶段),对流层高层MPV2负值位涡舌的向下伸展,有利于中低层大气斜压性增强,使垂直涡度发展,降水维持.湿螺旋度垂直分布能很好地反映暴雨发生时大气的动力特征,暴雨区上空低层正涡度、水汽辐合旋转上升与高层负涡度、辐散相配合,是触发暴雨的有利动力机制.强降水发生时段,湿螺旋度有显著增加,这对于降水发生的预报要优于z螺旋度.  相似文献
7.
本文利用四川138个气象站点1960~2010年的气温资料,分析了四川地区年均最高、最低气温及日较差的时空变化特征。结果表明:1960~2010年四川年均最高、最低气温在时间变化上呈非对称性升温,年均最高气温和最低气温的气候倾向率分别为0.131℃/10a和0.185℃/10a,后者增温幅度约为前者的1.4倍。年均最高、最低气温气候倾向率在空间分布上多数地区也呈非对称现象,年均最高、最低气温在西部高原地区升温较快,但最低气温的升温速率明显高于最高气温,这导致气温日较差在高原西部地区下降幅度较大。年均最高气温在1980年代最低,2000年代达到最高;年均最低气温在1960年代最低,2000年代最高;年均气温日较差在1960年代最大,1980年代最小。年均最高、最低气温分别在1996年和1993年发生转变,年均气温日较差分别在1973年和2005年发生了转变,年均最高、最低气温气候倾向率的不同及转变年的不一致导致气温日较差在转变年上的不一致。  相似文献
8.
史朝  何建新  刘艳 《气象科学》2010,30(2):245-249
首先分析了X波段双极化多普勒天气雷达降水估计的误差来源及其影响,然后分析了信比、积累阶数对降水估计精度的影响,明确雷达系统本身的测量误差所能达到的理想程度,结果表明在双通道的积累次数M=64,信噪比SNR=10 dB的条件下差分反射率的σ(Z_(DR))=0.32 dB,则相应R(Z,Z_(DR))的降水估计精度最好能达到44%,同样条件下差分相位的σ(Φ_(DP))=0.08°,那么在降水率R=50 mm/h时R(K_(DP))的降水估计精度最好能达8.6%.  相似文献
9.
利用1960~2006年我国地温、气温逐日4个时次[02:00(北京时间,下同)、08:00、14:00和20:00]的和中国降水台站观测资料以及NCEP/NCAR再分析资料,分析了我国春季(3~5月)和夏季(6~8月)地气温差的时空变化特征及其与夏季降水的联系。分析结果表明:我国春季地气温差主要存在着3种空间模态分布,第1模态表现出我国西部地区地气温差为正值,我国东部地区从南至北呈现出“-、+、-、+”空间分布特征;而第2模态则呈现“+、-、+”的空间分布特征;第3模态则表现出一致的空间分布特征。我国夏季地气温差同样存在着3种空间模态分布,第1模态表现出我国东部和西部地区夏季地气温差反相的空间分布特征;第2模态则呈现出“-、+、-”的空间分布特征;而第3模态则表现出“+、-、+、-”的空间分布特征。分析结果进一步表明我国春季和夏季地气温差第1模态与我国长江中下游地区夏季降水均存在正相关关系,而与华北地区出现负相关关系。而且,夏季更加显著。这主要是由于我国东部和西部热力差异增强,有利于在我国东部地区出现西北风异常,这说明东亚夏季风偏弱,不利于水汽向北输送,有利于华北地区降水偏少。并且,在我国东南部地区出现水汽辐合和上升运动,从而有利于我国长江中下游地区夏季降水偏多。  相似文献
10.
利用一组雷达阈值指标,对2013年四川盆地发生的5次区域性暴雨过程中的短时强降雨进行检验和订正,结果表明,(1)无论针对具体的站点,还是区域面上的短时强降水,预警指标对预警短时强降水是可行的,且预警时效在0 ~2h内效果较佳.(2) SWAN产品中分析显示,要产生20mm/h以上的短时强降水,满足预警指标的回波需要监测到3个6min以上,通常强回波持续越长,对应的雨量也越大.(3)针对降水面上的预警准确率除2013年7月04日15时的成功预警率在57.1%左右,其余过程中预警指标对未来1h短时强降雨的预警成功率基本在80%以上,误报率基本在20%以下,在误报的站点中,SWAN拼图中回波与单站雷达探测的回波,尤其是在低仰角度上存在较大误差.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号