首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  大气科学   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 531 毫秒
1
1.
为了精准判断玉米所处生长阶段,远程实时监测玉米长势,分析生长阶段与田间环境要素间的关系,本文提出深度局部关联神经网络,克服了玉米生长阶段识别中存在的多模态和模糊性问题,在Oxford VGGNet(Visual Geometry Group Net)模型中添加一个新的监督层,即局部关联损失层,提高深层特征的判别能力。基于所提的玉米生长阶段图片识别新算法,拓展环境要素监测功能,设计一套基于深度学习的玉米农田监测系统。系统由玉米农田监测装置和云端服务器组成,监测装置采集玉米图像、气象要素和田间位置数据,通过4G无线发送给云端服务器,云端服务器利用深度局部关联神经网络识别生长阶段,显示结果并存入数据库中。仿真试验表明,深度局部关联神经网络平均识别准确率达到92.53%,较VGGNet的87.21%和LSTM的88.50%,准确率分别提高了532%和4.03%。实地测试结果表明,野外环境下系统准确率可达到91.43%,能够稳定地对农田玉米生长情况进行监测,具有重要的应用价值。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号