全文获取类型
收费全文 | 465篇 |
国内免费 | 16篇 |
完全免费 | 484篇 |
专业分类
大气科学 | 965篇 |
出版年
2023年 | 2篇 |
2022年 | 50篇 |
2021年 | 43篇 |
2020年 | 57篇 |
2019年 | 39篇 |
2018年 | 41篇 |
2017年 | 32篇 |
2016年 | 35篇 |
2015年 | 41篇 |
2014年 | 60篇 |
2013年 | 59篇 |
2012年 | 54篇 |
2011年 | 42篇 |
2010年 | 32篇 |
2009年 | 30篇 |
2008年 | 47篇 |
2007年 | 45篇 |
2006年 | 60篇 |
2005年 | 33篇 |
2004年 | 30篇 |
2003年 | 22篇 |
2002年 | 14篇 |
2001年 | 18篇 |
2000年 | 14篇 |
1999年 | 4篇 |
1998年 | 27篇 |
1997年 | 12篇 |
1996年 | 11篇 |
1995年 | 7篇 |
1994年 | 3篇 |
1992年 | 1篇 |
排序方式: 共有965条查询结果,搜索用时 62 毫秒
1.
湿位涡(MPV)给出了大气短期行为的热力状态和涡旋运动之间的约束关系,这种关系导致了强降水这样的天气现象中涡旋爆发性增长的重要机制,它的大小与大气层结的状态、斜压性以及风的垂直切变有关,其正负符号取决这三者的配置。文章分析指出500 hPa上MPV1零线或0~20(0.1 PVU)的区域可作为强降水区的后界(西北界)。锋面南侧暖湿对流不稳定层结大气中,在对流层700 hPa及以下的中低层(低空急流之上)。存在着向东的正涡度环流对应MPV2的正值中心,该中心北部对应强降水区,而锋面北侧的对流稳定层结大气中, 相似文献
2.
利用徐州多普勒天气雷达、常规观测和地面加密观测资料,对2005年7月30日发生在安徽北部的伴随强烈龙卷和暴雨的强降水超级单体风暴的环境条件和回波结构演变特征进行了详细分析。主要结果如下:(1)该强降水超级单体产生在中等大小的对流有效位能和较大的深层垂直风切变条件下,同时抬升凝结高度很低,边界层内的低层垂直风切变很大,地面存在阵风锋。上述中等程度的对流有效位能值和大的深层垂直风切变有利于超级单体风暴的产生,而大的低层垂直风切变、低的抬升凝结高度和地面阵风锋的存在有利于F2级以上强龙卷的产生。(2)该超级单体的演化可以归结为"带状回波-典型强降水超级单体-弓形回波"三个阶段。在带状回波阶段,该超级单体的发展从一条狭长对流雨带的变短变粗开始,雨带中间的对流单体内首先有中气旋发展,从4km左右高度首先出现,然后同时向上和向下发展,前侧入流缺口变得明显,接着雨带南端的单体中也有中气旋发展。在典型强降水超级单体阶段,雨带南端单体逐渐与中间单体合并,构成一个庞大深厚的强降水超级单体和被包裹在其中的直径12 km左右、深厚强烈的中气旋,然后由于后侧入流的开始出现,低层回波形态层演变为"S"形,而中层回波呈现为螺旋型。(3)龙卷出现在"S"形回波阶段,在龙卷出现前,有一个龙卷涡旋特征TVS(Tornadic Vortex Signature)出现在中气旋的中心,其对应的垂直涡度值估计为6.0×10-2s-1。龙卷地点上空有很强的风暴顶辐散,散度值约为0.8×10-2s-1。弓形回波阶段的开始由在弓形回波北部逗点头回波的中心的另一个中气旋形成为标志,原有的中气旋位于弓形回波顶点附近,随后弓形回波的北宽南窄的不对称结构逐渐明显,原有的位于弓形回波顶点附近的中气旋消失,并出现地面直线型风害。另外,还对此次过程中气旋产生和超级单体形态的演变的可能机制进行了探讨。 相似文献
3.
1986年以来,长江流域的极端强降水出现了显著增加的趋势,突出表现在中下游地区。长江中下游地区极端降水量的增加,既是极端降水强度增强,也是极端降水事件显著增加的结果。长江流域极端降水变化主要发生在东南部和西南部。趋势分析表明,自20世纪80年代中期以来,长江流域上游极端降水事件峰值提前到6月份出现,与长江中下游极端降水峰值出现的时间几乎同步,这必将加大遭遇性洪水发生的机率。20世纪90年代以来长江洪水的频繁发生,与长江流域极端降水时空分布的变化密切相关。 相似文献
4.
5.
利用改进的三维完全弹性强对流云模式,模拟了1998年7月21日晨发生在武汉附近的特大暴雨个例,结果显示,该模式模拟得到的降雨量与实测接近,计算得到的雷达回波强度最大值也与实际观测相一致,说明该模式对实际对流性强降水具有较好的模拟能力.在此基础上,通过冷云和暖云两种不同情况的比较分析,研究了云微物理过程在强降水形成过程中的作用.模拟结果表明,详细云物理过程的考虑对深入理解武汉这次强降水的形成过程是有意义的.该个例雨水的形成主要是暖雨过程,冰相微物理过程对该对流性强降水过程的发展和演变有重要的促进作用.在形成雨水的冷相过程中,霰的融化及其在0 ℃层下碰并云水形成雨水的过程是主要的.模式云在0 ℃层附近存在明显的雷达回波亮带,亮带中间含有强回波核和及地下挂回波.分析表明,这种强回波核和下挂回波的产生主要是由于冰相粒子在0 ℃层融化形成的,融化的冰相粒子与云滴碰并又加速雨水的产生.在这些融化的冰相粒子中,贡献最大的是霰粒.文中还分析了该强降水暴雨云维持长时间强降水的云物理机制.在低层大气温暖高湿和环境风切变有利条件下,倾斜上升气流和下沉气流之间的准稳态结构可能是暴雨强降水得以长时间维持的重要原因. 相似文献
6.
青藏高原东侧陡峭地形对一次强降水天气过程的影响 总被引:31,自引:19,他引:12
利用高分辨率中尺度模式分析资料,研究了青藏高原东侧陡峭地形对一次暴雨天气发生发展的影响。结果显示,青藏高原地形对大气环流的动力阻挡作用形成了本次暴雨过程的水汽输送通道,青藏高原东侧陡峭地形结构造成了四川西北部和黄河上游的强水汽辐合中心,并使低层高能舌和能量锋区位于海拔较低的四川盆地,在四川盆地对流层低层建立起位势不稳定层结。青藏高原东侧陡峭地形结构引起了低层偏东气流强烈的垂直上升运动,最强的垂直上升运动出现在东西风垂直切变与陡峭地形交汇处,激发不稳定能量释放,促使强对流猛烈发展,暴雨过程中高原东侧还有一个中尺度涡旋的发生发展相伴。青藏高原东侧暴雨区最显著的热力特征是高温高湿区域仅出现在对流层低层,最显著的动力特征是强涡度柱也仅出现在对流层低层。 相似文献
7.
8.
9.
近40年来中国降水量的空间分布与相应时段的雨日数空间分布较一致;年降水量变化趋势主要呈现东北-西南向“+、-、+”分布型,其中以西部地区和长江三角洲的增加和华北及川东地区的减少趋势更加显著.对季降水来说,除了冬季降水量场表现为绝大部分地区为正趋势外,其它三季变化都较复杂;绝大部分地区年雨日数的趋势系数是负值,就是说雨日数总的趋势是减少的,全国范围内秋季雨日数明显呈现减少的趋势;夏季强降水日的平均频数介于0~11之间,最大值位于西南地区的西部,最小值则位于南疆地区;无论是降水量场还是雨日数场都与全球温度距平存在显著相关,只是后者的显著性水平高于前者. 相似文献
10.
梅雨锋暴雨中尺度对流系统结构模型的双多普勒雷达研究 总被引:24,自引:7,他引:17
使用双多普勒雷达三维风场反演技术对2003年6月26-27日合肥和马鞍山多普勒雷达探测到的江淮梅雨锋大暴雨资料进行了三维风场反演,对其中β和中γ尺度三维动力结构进行了研究.结果表明,中β尺度对流系统(MβCS)及其上的中γ尺度对流云团是此次暴雨的主要降水系统.中低层的中β尺度辐合线对此次暴雨的触发、发展、维持具有重要作用,随着辐合带的逐渐减弱,强降水也逐渐减弱.中尺度对流系统低层的正涡度大值区与辐合中心有较好的对应关系,并且对应地面的强降水区.文中还给出了此次暴雨的三维动力结构模型. 相似文献