首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   31篇
  收费全文   25篇
  完全免费   4篇
  大气科学   60篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   9篇
  2010年   10篇
  2009年   6篇
  2008年   2篇
  2007年   11篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
排序方式: 共有60条查询结果,搜索用时 156 毫秒
1.
将SVM(Support Vector Machine)分类和回归方法首次应用于气象预报试验。利用1990~2000年4~9月ECMWF北半球的500hPa高度、850hPa温度、地面气压的00:00UTC分析场资料,建立四川盆地分区面雨量有无大于15mm的SVM分类推理模型、四川盆地内单站气温的SVM回归推理模型,进行相应的预报试验,试验结果显示对应的SVM推理模型具有良好的预报能力。  相似文献
2.
支持向量机回归方法在实时业务预报中的应用   总被引:4,自引:4,他引:14  
冯汉中  陈永义 《气象》2005,31(1):41-44
简要介绍了支持向量机(Support Vector Machine,简称SVM)回归方法的基本原理,并介绍了基于SVM回归方法,利用1990~2000年1~12月ECMWF北半球的500hPa高度、850hPa温度、地面气压的0小时分析场资料构造预报因子,建立德阳市5个代表站的日平均气温、日最高气温、日最低气温的SVM回归预报模型及其在业务化运用中的效果。  相似文献
3.
支持向量机(SVM)及其在场预测中的应用   总被引:3,自引:3,他引:0  
介绍一种新的非线性回归分析方法--SVM回归.利用EOF能分解数据场和SVM回归分析可建立因子与预报量非线性关系的优势,设计预报方案:(1) 将因子场和预报场分别用方差标准化、EOF场展开,提取两场时间系数;(2) 用SVM回归分析实现因子场时间系数对预报场时间系数非线性预测;(3) 由预测的预报场时间系数与对应空间函数反演原场.用交叉检验的方法,对1960~2003年1月热带海表温度场预报汛期(6~8月)华中区域降水场进行试验.SVM回归44年独立预报平均技巧评分10.4%,较随机预报具有明显的技巧水平,优于经典回归.  相似文献
4.
SVM方法与长江上游降水落区预报   总被引:2,自引:2,他引:1  
在分析长江上游各流域面雨量的气候特征及面雨量与暴雨站数关系的基础上,依据SVM回归方法,利用面雨量和ECMWF 0 h资料,建立了面雨量的SVM回归方法预报模型,并对其进行了模拟试验.结果表明,SVM回归方法能运用于面雨量预报,并给出了依据SVM方法建立的流域面雨量实时业务预报系统的检验结果.  相似文献
5.
基于最小二乘支持向量机的副热带高压预测模型   总被引:1,自引:1,他引:2  
采用EOF时空分解、小波频率分解和最小二乘支持向量机(LS-SVM)交叉互补方法,建立夏季500 hPa位势高度场的预测模型,用以描绘和表述副热带高压形势场的形态和变化.首先用经验正交函数分解(EOF)方法将NCEP/NCAR再分析资料500 hPa位势高度场序列分解为彼此正交的特征向量及其对应时间系数,随后提取前15个主要特征向量的时间系数 (方差贡献96.2%),采用小波分解方法将其分解为相对简单的带通信号,再利用LS-SVM方法建立各分量信号的预测模型,最后通过小波时频分量重构和EOF时空重构,得到500 hPa位势高度场的预测结果以及副热带高压形势场的预测.通过对预测模型的试验情况和分析对比,结果表明:基于上述思想提出的算法模型能较为准确地描述500 hPa位势高度场的形态分布并预测1~7 d的副热带高压活动,对10~15 d的副热带高压活动预测结果也有参考意义.  相似文献
6.
支持向量机在三明主汛期短期气候预测中的应用   总被引:1,自引:1,他引:1  
采用1951~2007年共57年的3—4月阻高面积指数、关键区海温指数、环流特征量等31项产品资料来挑选因子,构造建模样本资料。建立三明地区东南部和西北部主汛期降雨短期气候预报方法。结果显示,通过支持向量机(SVM)方法作出的短期气候预测,具有较高的准确率。  相似文献
7.
基于交叉验证的多模式超级集合预报方法研究   总被引:1,自引:1,他引:3  
利用AREM、MM5和WRF 3个中尺度有限区域模式,通过选取对短期天气预报影响颇大的积云参数化方案和边界层方案构成15个集合预报成员,以2003年7月汛期天气为研究对象,分别采用相关加权、多元线性回归以及支持向量机回归与"交叉验证"相结合的方法,开展有限区域模式的多模式短期超级集合预报研究.文中主要对上述3种方法的24 h降水和700 hPa流场的超级集合预报结果与多模式集合平均预报结果以及T213模式结果进行了对比分析,结果表明:(1)对于24 h降水,支持向量机回归方法的超级集合预报得到的均方根误差比多模式集合平均小,各降水临界值的TS异常评分比多模式集合平均高;并且它也较相关加权法和多元线性回归的超级集合预报效果好.(2)对于700 hPa流场,对比分析各预报结果经过向量EOF分析得到的风场第1模态和第2模态表明,多模式集合平均主要使风场强度变小,多元线性回归和支持向量机回归的超级集合预报可以较好地刻画风场的强度分布,其中支持向量机回归的超级集合预报对风场强度及其区域分布的预报效果最好.(3)对于700 hPa流场,超级集合预报明显优于同期T213模式预报,从相同的预报均方根误差意义看,支持向量机回归的超级集合预报至少较T213模式预报能提前12 h.  相似文献
8.
最小二乘支持向量机在云量预报中的应用   总被引:1,自引:1,他引:0  
基于2003-2006年逐年1、8月WRF区域数值预报产品和单站观测资料,采用最小二乘支持向量机回归方法,结合选取合适的参数和核函数,分别按月通过不同长度样本序列建立了台北和厦门站总云量和低云量短期释用预报模型,利用2007年1、8月样本资料对模型进行了预报和检验,并与神经网络方法进行了对比.结果表明:最小二乘支持向量机回归方法的预报效果要好于神经网络方法;两站不同长度样本的总云量和低云量预报模型,预报效果较好,其预报准确率不会因为训练样本的减少而降低.可见,最小二乘支持向量机回归在云量等气象要素释用预报方面,具有较好的应用前景.  相似文献
9.
支持向量机在雷暴预报中的应用   总被引:1,自引:1,他引:0  
施萧  徐幼平  胡邦辉  成巍 《气象》2012,38(9):1115-1120
论文利用2002--2006年AREM模式产品和常规观测报文资料,综合运用改进的K平均聚类和主成分分析等方法,基于MOS原理逐月建立了最小二乘支持向量机和线性规划支持向量机的单站雷暴释用预报模型,并针对海口站2007年58月进行了具体的预报。结果表明:支持向量机结合AREM模式产品进行雷暴的释用预报是合适、有效的,而且主成分分析对预报结果的提高也起到了积极的作用。  相似文献
10.
支持向量机非线性回归方法的气象要素预报   总被引:1,自引:1,他引:0  
该文介绍了基于基本的支持向量机非线性回归方法,该方法具有解决非线性问题的能力,在数值预报解释应用技术中,对某些预报量与预报因子之间相关性不显著的要素,如风、比湿等,采用支持向量机非线性回归技术较多元回归的MOS方法更具优势;利用北京市气象局中尺度业务模式(MM5V3) 的12:00(世界时)起始数值预报产品和观测资料,制作北京15个奥运场馆站点6~48 h逐3 h的气象要素释用产品。对比MM5V3模式,从均方根误差的平均减小率来看, 2 m温度减小12.1%, 10 m风u分量减小43.3%, 10 m风v分量减小53.4%, 2 m比湿减小38.2%。与同期的MOS方法预报结果相比,整体预报效果SVM略优于MOS。由此可见,支持向量机非线性回归方法解决与预报因子之间非线性相关的气象要素较好,具有较高的预报优势。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号