首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26021篇
  免费   6839篇
  国内免费   7890篇
测绘学   1974篇
大气科学   12165篇
地球物理   3203篇
地质学   15516篇
海洋学   3396篇
天文学   528篇
综合类   2080篇
自然地理   1888篇
  2024年   162篇
  2023年   772篇
  2022年   1035篇
  2021年   1191篇
  2020年   1122篇
  2019年   1383篇
  2018年   1118篇
  2017年   955篇
  2016年   990篇
  2015年   1163篇
  2014年   1835篇
  2013年   1522篇
  2012年   1747篇
  2011年   1788篇
  2010年   1804篇
  2009年   1713篇
  2008年   1721篇
  2007年   1528篇
  2006年   1518篇
  2005年   1529篇
  2004年   1380篇
  2003年   1254篇
  2002年   1246篇
  2001年   1166篇
  2000年   932篇
  1999年   814篇
  1998年   835篇
  1997年   836篇
  1996年   793篇
  1995年   754篇
  1994年   733篇
  1993年   603篇
  1992年   656篇
  1991年   587篇
  1990年   534篇
  1989年   446篇
  1988年   125篇
  1987年   76篇
  1986年   42篇
  1985年   38篇
  1984年   31篇
  1983年   24篇
  1982年   26篇
  1981年   23篇
  1980年   16篇
  1979年   11篇
  1964年   11篇
  1950年   11篇
  1941年   12篇
  1936年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
多年冻土区森林土壤是重要碳库,对于全球CO2、N2O和CH4平衡具有重要意义,冻融循环是多年冻土区的重要特征,但冻融作用对不同林型腐殖土有机质分解和温室气体排放的影响需进一步研究。本研究对兴安落叶松林(针叶林)、白桦林(阔叶林)、兴安落叶松和白桦混交林(针阔混交林)三种林型的腐殖层土壤进行了42天的短期室内培养实验,探索冻融作用对土壤理化性质和温室气体排放的影响。结果表明,冻融导致森林腐殖层土壤溶解性有机碳(DOC)增加,针叶林、阔叶林和针阔混交林分别增加了314.8%、91.4%和43.2%,但冻融后短期内土壤有机碳分解的温度敏感性(Q10)均明显下降,CO2排放量在25℃时分别下降24.7%、36.4%和29.5%。同时冻融作用也降低了森林土壤吸收CH4的能力,但没有发现对土壤N2O排放产生明显影响。冻融作用短期内降低了森林土壤温室气体全球增温潜势(GWP),其中对CO2的抑制作用最为明显,阔叶林腐殖层土壤受...  相似文献   
2.
2019年黑龙江省完成"一带一路"地震科学台阵项目中台址勘选工作,基于科学台阵中136个台址的地面运动噪声数据,通过计算不同频段范围内背景噪声记录的加速度功率谱密度,研究不同环境噪声下科学台阵记录数据的地噪声特征及其台基响应。结果表明:黑龙江西北和东南部地区地面运动噪声水平低,观测环境较好;中部和东北部地区噪声水平较高,大庆地区尤为严重。勘选结果真实反映了黑龙江区域内的背景噪声分布,使我们对本区域地噪声水平和干扰因素有了新的认识。  相似文献   
3.
4.
内蒙古自治区碾子沟钼矿床地处华北地台北缘西拉木伦钼成矿带西段,为一典型的中型石英脉型钼矿床。该钼矿床矿脉(体)主要产于燕山早期二长花岗岩-钾长花岗岩内NNW、NW向断裂构造体系之中,成矿作用过程经历了黄铁矿±辉钼矿+石英(Ⅰ)、辉钼矿+黄铁矿±黄铜矿+石英(Ⅱ)、黄铜矿+黄铁矿±闪锌矿+石英(Ⅲ)及石英±方解石(Ⅳ)4个阶段。系统的流体包裹体岩相学、包裹体组分析、包裹体显微测温研究表明,矿床初始成矿流体为高温、中低盐度(490~550℃,盐度(w(NaC1))2%~10%,50~62 MPa)均匀的NaCl-H2O体系热液,δ18OH2O-SMOW(2.21‰)及δDH2O-SMOW(-68.9‰)表明其主要来源于岩浆热液;成矿流体上升并不断汇聚于容矿断裂空间,伴随温度、压力降低(380~460℃,26~40 MPa→360~420℃,25~30 MPa)而进入两相不混溶区,流体开始发生沸腾→强烈沸腾作用,导致成矿元素Mo大量沉淀富集成矿,成矿晚期残余流体与大气降水混合(δ18OH2O-SMOW为-2.41‰~2.51‰,δDH2O-SMOW为-110.1‰~-105.5‰),矿床属燕山早期中高温岩浆热液型钼矿床。  相似文献   
5.
东昆仑夏日哈木地区首次发现了早泥盆世二长花岗岩,对其开展年代学和地球化学特征研究,进一步探讨其岩石成因和构造地质背景。二长花岗岩锆石U-Pb年龄为(412.1±5.7) Ma(MSWD=0.95),形成于早泥盆世早期; 岩石为过弱铝质亚碱性花岗岩,富SiO2(含量为71.41%~72.46%)、K2O(含量为5.27%~6.16%),贫Fe2O3(含量为1.86%~2.05%)、P2O5(含量为0.08%~0.12%),富集轻稀土元素,具明显的负Eu异常; 在原始地幔标准化微量元素蛛网图上可以看出,岩石明显富集Rb、Th、Zr、Hf,强烈亏损Nb、Sr、P、Ti、Ba。夏日哈木地区二长花岗岩属于I型花岗岩,其源岩可能由幔源岩浆底侵加热下地壳岩石致其部分熔融而形成,处于由同碰撞向后碰撞转换的构造环境,说明东昆仑夏日哈木地区在早泥盆世早期已进入伸展阶段。  相似文献   
6.
为了探讨琼东南盆地华光凹陷海底天然气水合物稳定带的分布规律,定量研究了静水压力、底水温度、地温梯度和气源组分对水合物稳定带的影响程度。在此基础上,分析了华光凹陷现今甲烷水合物稳定带的厚度分布。最后,综合各因素的历史演化过程,初步探讨了华光凹陷1.05 Ma BP以来天然气水合物稳定带的演化。结果表明:(1)气源组分和海底温度的变化对研究区内水合物稳定带的影响较大;水合物稳定带厚度与海底温度呈良好的线性负相关性。(2)水深超过600 m的海域具备形成天然气水合物的温压条件;超过600 m水深的海域水合物稳定带厚度大部分超过 100 m,其中西北部稳定带的最大厚度超过300 m,是有利的水合物勘探区。(3)华光凹陷1.05 Ma BP以来天然气水合物稳定带厚度经历了快速增厚–窄幅变化–快速减薄和恢复的过程。麻坑群与水合物稳定变化敏感区在空间上具有较好的叠合关系。结合前人的研究成果,推测其形成与天然气水合物的分解释放有关。  相似文献   
7.
对会昌台数字化洞体形变观测资料的干扰因素进行了分析。分析结果表明,会昌台大多数洞体形变观测资料稳定可靠,年变动态清晰,受气象因素影响不大,形变与洞温相关性较好,年变受控于洞温变化。雷电击坏仪器导致断记是影响连续率的主要因素,更换仪器可能对形变的趋势变化造成一定影响。  相似文献   
8.
9.
提出了一种基于锚系垂直阵列的对水下移动目标警戒的方法,论述了基于锚系垂直阵列时频瞬态特性探测和空间相关性探测的原理。利用海洋环境与目标噪声在时-频域与空间上的差异,对水下移动目标探测警戒,探测概率高且计算相对简便。垂直阵列悬挂于锚系潜标的系留缆或直接作为潜标的系留缆,布放机动灵活、适应水深范围广,可用于对水下移动目标的长周期、定点、大范围实时监测。  相似文献   
10.
【目的】探讨不同季节但路径相似的台风暴雨的相关特征,为不同季节的台风暴雨落区预报提供参考依据。【方法】利用常规的探空和地面资料以及NCEP/NCAR1°×1°全球再分析资料,计算2个强台风的水汽通量散度和湿位涡场。对比分析水汽通量辐合、湿位涡正压项(MPV1)和斜压项(MPV2)的水平和垂直分布特征,以及与暴雨落区的对应关系。【结果】秋季的"彩虹"台风高层副热带高压加强,而中低层冷空气和东南气流的汇合使"彩虹"台风的东侧和北侧获得更有利的动力环境条件;而夏季的"威马逊"台风北侧无冷空气影响,台风南侧外围强盛的西南季风气流卷入。台风"威马逊"期间,强的水汽通量辐合中心始终在台风及其残涡中心的南侧和西侧;台风"彩虹"登陆后60 h内一直持续有2支强盛的气流向台风中心输送水汽,而水汽通量的辐合中心与"威马逊"相反,位于台风中心的北侧和东侧,东南气流的卷入以及维持时间长使暴雨增幅。台风"彩虹"登陆后高层高值MPV1扰动下传,低层MPV2> 0并增强,湿斜压性得以增强,有利于垂直涡度增长,使台风低压得以维持和发展;登陆后48~66 h 925 hPa层MPV1为负值,使对流不稳定能量及潜热能的释放,有利于暴雨的维持。而台风"威马逊"登陆后湿斜压性增强不明显。2个台风强降水中心大致位于925 hPa MPV1正负中心过渡带偏向负中心一侧;"威马逊"过程低层MPV1负值中心在正值中心的左侧,对应着西南季风的汇入区;而"彩虹"过程低层MPV1负值中心在正值中心的右侧,对应着冷空气和东南气流的汇合区。这是2个台风暴雨落区差异的成因之一。【结论】本研究得出的湿位涡诊断结果对台风暴雨落区预报具有较好的指示意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号