首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89252篇
  免费   18461篇
  国内免费   14693篇
测绘学   11023篇
大气科学   28382篇
地球物理   12399篇
地质学   38293篇
海洋学   10695篇
天文学   968篇
综合类   7511篇
自然地理   13135篇
  2024年   103篇
  2023年   2190篇
  2022年   2933篇
  2021年   3307篇
  2020年   3049篇
  2019年   3450篇
  2018年   2530篇
  2017年   2609篇
  2016年   2750篇
  2015年   3275篇
  2014年   6541篇
  2013年   5028篇
  2012年   5833篇
  2011年   6000篇
  2010年   5531篇
  2009年   5999篇
  2008年   6198篇
  2007年   5298篇
  2006年   4722篇
  2005年   5363篇
  2004年   4483篇
  2003年   4333篇
  2002年   3695篇
  2001年   3410篇
  2000年   2880篇
  1999年   2630篇
  1998年   2519篇
  1997年   2511篇
  1996年   2235篇
  1995年   2044篇
  1994年   1902篇
  1993年   1461篇
  1992年   1536篇
  1991年   1283篇
  1990年   1011篇
  1989年   843篇
  1988年   214篇
  1987年   124篇
  1986年   84篇
  1985年   76篇
  1984年   56篇
  1983年   42篇
  1982年   47篇
  1981年   41篇
  1980年   33篇
  1979年   16篇
  1975年   16篇
  1965年   10篇
  1954年   17篇
  1941年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
针对电离层总电子含量(TEC)数据非线性、非平稳的特点,在自回归移动平均(ARMA)模型的基础上,结合经验小波变换(EWT),提出一种组合的短期电离层预测方法。采用IGS提供的电离层TEC格网数据进行实验,通过对比分析可知,相较于单一ARMA模型,本文组合模型在太阳活动低年和太阳活动高年5 d内的平均相对精度分别提高4.8%和2.8%,前1 d内组合模型的平均相对精度分别提高7%和6.1%。  相似文献   
2.
针对卫星钟差不能被精确模型化的问题,将具有较强记忆功能和强大计算能力的Elman神经网络运用到卫星钟差预报中,提出适用于卫星钟差预报的Elman模型。首先对原始钟差数据进行一次差处理,然后选择合适的神经网络结构建立预报效果最佳的Elman钟差预报模型,最后选用国际GNSS服务(IGS)提供的精密钟差数据进行GPS卫星钟差预报,并与二次多项式模型、附加周期项的多项式模型和灰色系统模型进行对比分析。结果表明,Elman模型进行1 d、7 d和30 d钟差预报的精度得到显著提高,分别达到亚ns、ns和μs级,表明该模型的钟差预报性能优于3种常用模型,在卫星钟差预报中具有可行性。  相似文献   
3.
疫灾是人类灾害链网中的顶级灾害。利用历史疫灾史料,建立疫灾时间序列,使用历史断面分析、因子相关分析、时间序列分析等方法,对中国过去2720年疫灾流行的时空特征及其影响因素进行研究。结果表明:① 中国疫灾流行的频度和强度有长期上升趋势,温暖期形成疫灾低谷,寒冷期形成疫灾高峰。② 中国疫灾流行总体以夏、秋季为主,但有阶段性差异,15世纪50年代以后,由于疫病种类增多,疫灾频度提高,疫灾的季节性差异逐渐不显著。③ 中国疫灾波动周期主要有620~610 a、320~310 a、230~220 a、170 a、90 a等,它们大都是12 a或11.2 a的倍数,反映了“十二地支”周期的存在和太阳黑子活动对疫灾周期的重大影响。④ 过去近3000年里,中国累积的疫灾广泛度为93.51%,疫灾厚度达16.86层,东南半壁的疫灾比西北半壁的频繁得多、严重得多。⑤ 中国疫灾区域拓展与土地开发同步,疫灾重心变迁受经济重心的牵引,南宋以前由北向南迁移,南宋以后由东向西迁移;外来疫病输入对疫灾分布格局产生重大影响。⑥ 疫灾流行既是自然生态现象,也是社会文化现象,疫灾时空分布变迁反映人地关系变迁,人口稠密区、交通沿线区、都城周边区、自然疫源区、灾害频发区都是疫灾多发区。⑦ 地理环境分异奠定疫灾空间分异,高温、高湿、低海拔地区疫灾易于流行;自然灾害对疫灾具有诱发作用,灾害频繁区也是疫灾频发区,灾害频繁期也是疫灾频繁期;气候变迁影响疫灾波动,寒冷期疫灾多发,温暖期疫灾少发;人口增加带来的土地开发和人地关系紧张,加剧疫灾的流行;疫灾与战争如影随形,战乱频繁期也是疫灾频繁期。  相似文献   
4.
陈莹  赵辉 《海洋学研究》2021,39(3):84-94
本文使用2003年1月—2019年12月MODIS遥感数据,结合海表温度、风速分析南海中西部叶绿素质量浓度分布特征和影响因素。结果显示南海中西部叶绿素质量浓度分布存在时空变化。EOF分解表明,EOF1可能反映台风等极端天气对叶绿素的影响;而EOF2 和EOF3均反映了夏季沿岸上升流对叶绿素分布的影响。相关分析表明南海中西部叶绿素质量浓度与海面风场呈正相关(r=0.87,p<0.01),与海表温度呈负相关(r=-0.59,p<0.05)。夏季在西南季风影响下越南东南沿海形成上升流,导致该区浮游植物旺发、叶绿素质量浓度升高;冬季受强东北季风影响,研究区海洋上层混合作用强烈,营养盐供应增加,促进了浮游植物生长,叶绿素质量浓度高于其他季节。  相似文献   
5.
目的:通过Meta分析明确老年卒中相关性肺炎(SAP)患者并发多重耐药菌(MDR)感染的危险因素。方法:检索PubMed、Embase、Cochrane Library、Web of science、中国知网(CNKI)、中国生物医学文献数据库(CBM)、万方数据(WANFANG DATA)、维普中文科技期刊数据库(VIP)中有关老年SAP并发MDR感染危险因素的文献,检索时限均从建库至2020年6月,对纳入文献进行质量评价,运用Rev Man 5.3进行Meta分析。结果:共纳入16篇文献,涉及老年SAP患者3466 例,其中MDR感染患者1403 例,未感染患者2063 例。Meta分析结果显示:意识状态[OR=0.30,95%CI(0.25,0.36),P<0.00001]、SAP类型(早发型、晚发型)[OR=0.30,95%CI(0.23,0.39),P<0.00001]、入住病房类型(ICU、普通病房)[OR=3.23,95%CI(2.50,4.18),P<0.00001]、留置胃管[OR=2.66,95%CI(2.19,3.24),P<0.00001]、预防性使用抗生素[OR=3.24,95%CI(2.60,4.04),P<0.00001]、人工气道[OR=2.89,95%CI(2.01,4.17),P<0.00001]、糖尿病史[OR=1.84,95%CI(1.37,2.46),P<0.0001]、吞咽功能[OR=1.58,95%CI(1.07,2.35),P=0.02]、吸烟史[OR=1.26,95%CI(1.02,1.56),P=0.03]是老年SAP患者并发MDR感染的危险因素(P<0.05);患者性别、年龄与MDR感染无显著相关性;尚不能确定卒中类型(脑出血、脑梗死)与MDR的感染是否相关。敏感性分析提示Meta分析结果稳定。结论:基于现有证据,意识障碍、晚发型肺炎、入住ICU、留置胃管、预防性使用抗生素、气管插管/切开、糖尿病史、吞咽障碍、吸烟是老年SAP并发MDR的危险因素。  相似文献   
6.
本文提出了一种基于冷冻脱盐的海水双级冷冻预淡化系统。该系统利用蒸发结晶器对海水进行冷冻,并通过振动分离与洗涤实现冰晶与卤水的分离,以此实现海水的初步脱盐,可作为反渗透淡化的预处理系统。同时,海水冷冻淡化过程中消耗的冷量可重新回收用于空调制冷,淡化成本得以有效降低。本文建立了海水双级冷冻预淡化系统的数学模型,获得了试验系统的关键设计参数,以此搭建了试验平台并完成了试验测试,并对海水双级冷冻预淡化系统进行了经济性分析。试验结果表明:经过海水冷冻预淡化系统,预淡化海水产量可维持在21~27 L/h之间;预淡化海水盐度可从35降低到约11;预淡化过程可回收总冷量7.91 kW;反渗透淡化总成本可降低约33%。  相似文献   
7.
Houfangzi graphite deposit is located in the middle of the graphite metallogenic belt in the northern margin of North China Block in Hebei Province, which belongs to regional metamorphic type graphite deposit. In this paper, through rock-mineral determination, IP ladder sections and exploratory trench survey, the authors have discussed its metallogenic geological characteristics and ore body characteristics, and analyzed its ore genesis. The research results show that the ore bodies are mainly in the graphitic marble of Dongjingzi Formation of Hongqiyingzi Group, which are stratified and controlled by layers, with NE trend and NNW inclination. The IP anomaly shows that Houfangzi graphite deposit is characterized by low resistance and high polarization. Ore bodies are stable and of big scale, and their fixed carbon content ranges from 1.42% to 3.28%, which has the potential to be a large graphite deposit. The ore-forming material came from granulite and graphite marble, while the regional metamorphism is the main mineralization of Houfangzi graphite deposit, with the enrichment and increasement caused by late magmatic activity and migmatization.  相似文献   
8.
三江源地区美丽中国建设存在的问题、成功案例与启示   总被引:1,自引:0,他引:1  
杨建平  康韵婕  唐凡  秦彧 《冰川冻土》2021,43(5):1551-1559
长江、黄河与澜沧江源区(简称三江源区)是中华与亚洲“水塔”,是我国重要的生态安全屏障与水安全保障,是三大河流域经济带的共有源地,稳藏固疆的战略要地,美丽中国建设的战略高地。掌握该地区美丽中国建设进程,发现存在的问题,及时总结典型成功案例,有助于更好建设美丽高原,服务生态文明建设与社会经济高质量发展的全国战略部署。就建设内容与进程看,目前三江源区整体仍处于物质建设阶段,除畜牧业外,缺乏其他产业,忽视文化建设,美丽缺少内涵、不可持续;就建设成效而言,美丽乡村与美丽城镇工程建设成绩显著,但配套设施严重滞后,以及游牧文化与聚落文化的冲突,美丽仍流于形式;尽管存在这些问题,但亦涌现了若干成功案例,“岗龙模式”和“甘达模式”尤为典型,为三江源其他地区美丽中国建设提供了样板与发展启示:(1)找准优势资源,最大化资源潜力、实现经济“美”是高原美丽中国建设成功的物质基础;(2)领导人/团队/致富带头人是高原美丽中国建设成功的关键核心;(3)产业与因地制宜的运作机制是高原美丽中国建设可持续的强大支撑与必由之路;(4)不断探索永远走在发展路上是美丽中国建设成功的坚实动力。  相似文献   
9.
利用西藏自治区昌都市及周边18个气象观测站1989~2018年降水资料和NCEP/NCAR再分析资料,首先进行强降水个例筛选,在大气环流分型的基础上,应用后向轨迹模型分析了暴雨和大雨在不同环流形势下的水汽输送轨迹。结果表明:昌都产生强降水的大气环流形势分为高原低涡、高原槽及高原切变线3种类型,其中以高原切变线型为主,而降水强度最大的是高原槽型。不同环流形势下暴雨发生时三个等压面的水汽轨迹方向基本一致,均以偏南气流为主,水汽来源相对集中,容易在短时间内造成强降水;而大雨发生时三个等压面的水汽轨迹多以偏南气流为主,与暴雨相比,水汽来源较为分散且水汽条件较差。夏季昌都的水汽来源主要以印度洋、孟加拉湾、阿拉伯海、南海为主,最远可以追溯到大西洋。   相似文献   
10.
利用福建重力台网7套gPhone重力仪的连续观测资料,对不同震中距和震级地震的同震响应特征及重力仪映震的最大震中距进行分析。结果表明:1)福建重力台网的映震效能受震级和震中距影响,从映震能力来看,泉州台优于莆田台,厦门台优于福州台,漳州台和龙岩台优于南平台;2)福建重力台网的仪器稳定性好和灵敏度高,与CMG-3ESP 120S地震计相比,重力仪具有较宽的地震频带,其同震响应持续时间与波幅呈高度正相关性;3)福建重力台网仪器映震的最大震中距(Δ)与震级(MS)存在对应关系,具体公式为MS=-0.218(logΔ)3+2.056(logΔ)2-4.594logΔ+6.459。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号