首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   3篇
大气科学   5篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 171 毫秒
1
1.
ANUSPLIN薄盘光滑样条插值中,高相关协变量的选取决定了插值结果的精确性。本文选取2017—2019年大雾和霾能见度较差的天气过程,利用183个能见度观测站点对能见度进行插值,引入Himawari-8卫星的通道数据和DEM数据作为协变量对能见度的插值结果进行改进,并对能见度插值结果进行对比分析。研究表明,引入Himawari-8数据和DEM数据作为协变量的能见度插值结果在精度上有显著提高,尤其对雾区和霾区的边界范围和纹理的反演更为准确,基于Himawari-8卫星数据和气象监测站点的观测数据,使用协变量的方法进行能见度插值可以做为能见度监测网格化的一种有效途径。  相似文献   
2.
基于ANUSPLIN软件的逐日气象要素插值方法应用与评估   总被引:10,自引:0,他引:10  
气象要素是资源、环境和灾害以及全球变化等领域研究的数据基础,格点化数据在未来研究应用中显得日益重要。基于中国境内667个基本和基准地面气象观测站点的基本气象资料,使用ANUSPLIN专用气候插值软件对1961—2006年逐日气温、降水进行插值,并利用未参与插值的全国1 667个加密站点对插值结果的准确性进行检验,同时与反向距离权重法和普通克吕格法等插值方法的结果进行对比。结果表明:利用667个站点使用ANUSPLIN软件进行逐日平均气温插值有92.0%的误差在2.0℃以内,75.0%的误差在1.0℃以内,0.9%的误差在5.0℃以上,平均绝对误差为0.8℃;对逐日降水进行插值,75.0%的误差小于5.0 mm,85%的误差小于10.0 mm,平均绝对误差为6.4 mm,误差大小与降水量呈现出正相关性,对局地强降水的插值效果不好,这可能与参与局部拟合插值的样本数太少有关;同时,夏季的温度插值误差小于冬季,而冬季的降水误差小于夏季。将ANUSPLIN的局部薄盘样条插值结果分别与反向距离权重法和普通克吕格法的插值结果进行对比,显示ANUSP-LIN软件的插值误差最小。结果同样表明,适当增加站点数量和提高DEM精度可进一步提高ANUSPLIN软件的插值精度。  相似文献   
3.
为建立一个高精度、高空间分辨率的逐日气温格点数据集,满足公共气象服务对于精确信息及实时信息的需要,利用2018年6—8月京津冀区域以及临近省区共3 974个国家级及区域气象观测站质控后的逐日气温资料,采用ANUSPLIN软件对逐日气温数据进行空间内插,得到了京津冀区域逐日气温格点数据集(0.01°×0.01°),并分别利用反距离权重插值法、普通克里金插值法、样条函数法对逐日气温数据进行空间插值,采用相关系数(Corr)、平均绝对误差(MAE)、平均相对误差(MRE)等作为评估指标来检验插值精度。结果表明:1)ANUSPLIN软件满足了空间插值对精度及曲面平滑度的要求,能直观体现京津冀区域气温由北向南递增的空间分布特征;2)4种插值方法中,基于ANUSPLIN软件的插值结果最优,相关系数平均达0.97,其样本误差在1 ℃之内占比为90.59%,MAE为0.46 ℃,MRE为1.81%;3)插值误差较大的区域位于冀北高原、燕山丘陵及太行山脉一带,高海拔、低站点密度等是造成插值误差的主要原因。基于ANUSPLIN插值方法建立的逐日气温格点数据集具有分辨率高、空间插值误差小的优势,ANUSPLIN对气温的空间分布具有较好的预测能力。  相似文献   
4.
陆福志  鹿化煜 《地理学报》2019,74(5):875-888
本文建立了秦岭—大巴山高分辨率(~29 m×29 m)的气候格点数据集,包括逐月气温和降水、年均温和年降水、春夏秋冬气温和降水。空间插值方法采用国际上较为先进的ANUSPLIN软件内置的薄盘光滑样条函数,以经度、纬度和海拔为独立变量。空间插值结果与流行的WorldClim 2.0气候格点数据集具有一致性,但是比后者更精确、分辨率更高、细节更突出。本文揭示和证实:秦岭南麓是最冷月气温的0 ℃分界线。秦岭—大巴山气温具有明显的垂直地带性。6月气温直减率最大,为0.61 ℃/100 m;12月气温直减率最小,为0.38 ℃/100 m;年均气温直减率为0.51 ℃/100 m。夏季和秋季降水从西南向东北递减,强降水中心出现在大巴山西南坡。冬季降水从东南向西北递减。大巴山是年降水1000 mm分界线,夏季降水500 mm分界线;秦岭是年降水800 mm分界线,夏季降水400 mm分界线。与大尺度大气环流对比揭示:秦岭—大巴山气温和降水空间分布主要受到东亚季风和地形因子的控制。本文进一步明确了秦岭和大巴山的气候意义:大巴山主要阻挡夏季风北上,影响降水空间分布;秦岭主要阻挡冬季风南下,影响冬季气温空间分布。本文建立的高分辨率气候格点数据集,加深了对区域气候的认识,并将有多方面的用途。  相似文献   
5.
专用气候数据空间插值软件ANUSPLIN及其应用   总被引:27,自引:0,他引:27  
空间化的气候数据作为环境因子参数是区域气候模型和地学模型的基础,而插值软件是实现气候观测点数据空间化的工具.ANUSPLIN基于薄盘样条函数理论,引入多个影响因子作为协变量进行气象要素空间插值,大大提高插值精度,且能同时进行多个表面的空间插值,对时间序列的气象要素更加适合.  相似文献   
6.
在薄盘光滑样条插值中,高相关协变量的选取决定了插值结果的精确性。以2001-2009年全国728个气象站点日降水为数据源,提取年降水量数据,在分析多年平均降水量与两协变量高程(DEM)和距海岸线距离(DCL)的空间相关性基础上,利用ANUSPLIN软件,比较不同协变量下降水量插值结果精度在全国尺度以及区域尺度上的差异。以DEM、DCL及DEM-DCL分别为协变量对降水量数据进行空间插值发现:①在全国尺度上,DEM法的平均绝对误差(MAE)为47.79,略低于DEM-DCL法(48.90),但显著低于DCL法(55.54);且DEM法的平均相对误差和均方根误差也明显低于其它两种方法。②在区域尺度上,除西藏地区外的其他7个区域,3种方法的插值误差与全国尺度上相一致。西藏地区降水插值结果以DCL法的精度最高,而DEM法则较差。研究建议除在西藏地区的降水量插值研究中采用DCL法,在全国其他大部分区域采用DEM法。  相似文献   
7.
伏牛山地森林植被物候及其对气候变化的响应   总被引:4,自引:1,他引:3  
研究植被物候是理解植被与气候关系的重要途径。在植被对气候变化响应的敏感地区,开展植被物候研究有助于揭示气候变化对植被的影响机制。基于2000-2015年MODIS EVI时间序列影像数据,利用Savitzky-Golay (S-G)滤波方法和动态阈值法提取伏牛山地2000-2015年森林植被物候参数,结合气温、降水数据,运用Man-Kendall趋势检验、Sen斜率、ANUSPLIN插值和相关性分析等方法,研究伏牛山地森林植被物候对气候要素(气温、降水)变化的响应。结果表明:① 伏牛山地森林植被生长季始期主要集中在第105~120 d,生长季末期主要集中在第285~315 d,生长季长度主要集中在165~195 d。从海拔梯度看,随海拔升高,生长季始期、末期和长度整体上分别呈显著推迟、提前及缩短趋势。② 生长季始期和生长季末期整体上呈推迟趋势,推迟的像元分别占森林植被的76.57%和83.81%。生长季长度整体呈延长趋势,延长的像元占比为61.21%。生长季始期变化特征主要是由该地区的春季气温降低所导致的。③ 研究区森林植被生长季始期与3月平均气温呈显著偏相关,且呈负相关的区域最多,即3月平均气温降低,导致生长季始期推迟;生长季末期与9月降水呈显著偏相关区域最多,且两者主要呈正相关,即9月降水增加,使生长季末期推迟。植被生长季长度由整个生长期的气温和降水来共同作用,对大多数的区域而言,8月的平均气温和降水与生长季长度的关系最为密切。  相似文献   
8.
近38年中国气温和降水的1 km网格数据集   总被引:1,自引:0,他引:1  
对中国38年的气温和降水进行了空间插值分析,选取最优模型去生成1km网格数据集,为中国大陆的植被分布、气候变化和环境生态等研究提供支持。基于国家气象中心839个气象站的逐日气温和降水数据,用经度、纬度和海拔作为ANUSPLIN软件插值的3个变量,对降水进行开平方预处理,采用3次样条的薄盘光滑样条法,得到了1980—2017年中国大陆月平均气温和月累计降水1km网格插值数据集。数据集的广义交叉验证均方根(RTGCV)和均方根误差(RMSE)具有年周期性和明显的季节变化特征;各站点的平均误差(MBE)的频率分布近似正态分布,绝对误差(MAE)的空间分布也符合中国大陆气候的变化特征。数据集在精准度和时间序列上较新,且提供公共下载服务,可为全国陆地生态系统的研究提供信息支持。  相似文献   
9.
秦岭中部山地降水的垂直变化研究   总被引:1,自引:0,他引:1  
明确秦岭高海拔山区降水的变化规律,是深入理解秦岭作为中国南北地理过渡带特征、认识秦岭水资源在南水北调中线工程中重要作用的前提。但秦岭高海拔地区长期缺乏有效的降水观测数据,导致对其降水变化缺乏了解。利用2018年6月1日—2019年5月31日秦岭太白山海拔3760 m实测降水数据,发现在秦岭海拔3760 m处年降水量可达1300 mm,远高于汉江盆地和关中平原600~800 mm的年降水量。在此基础上,检验了克里金(Kriging)、反距离加权(IDW)和薄盘样条(ANUSPLIN)插值方法,以及GPM修正数据(GPM-cal)和ERA5再分析资料对秦岭中部山地年和季节降水空间模态的再现效果,各方案均能揭示秦岭高山区是降水高值中心,且降水随海拔的升高而增大,但利用克里金、反距离加权插值方案不能得到准确的高海拔降水值,与此相比,GPM-cal数据、薄盘样条插值与ERA5资料能较准确刻画秦岭中部山地年降水量随地形的变化。水汽通量分析显示,秦岭凭借高大地形对600 hPa高度以下的南来湿润气流具有明显的阻挡、强迫和拦截作用,使其南坡成为区域降水高值中心。结合高山区降水观测、薄盘样条插值、多源格点资料和数据修正方法,是认识秦岭山地降水形成和变化的有效途径。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号