首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  国内免费   3篇
测绘学   2篇
大气科学   13篇
自然地理   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
利用MODIS气溶胶光学厚度(AOD,Aerosol Optical Depth)产品与同期乌鲁木齐市空气质量指数进行相关性分析,得到二者的相关系数为0.664。对MODIS AOD产品进行垂直和湿度订正后,二者的相关性显著提高,相关系数从0.664提高到0.805。订正后按季节分类统计,春、夏、秋3季的相关系数分别为0.775、0.608和0.822,其中秋季的订正更为有效,可用性更高。这可能受到不同季节气溶胶来源、特征以及数据样本差异的影响。最后分别建立全年、春季、夏季和秋季的线性、对数、一元二次、乘幂和指数5种类型的拟合模型。考虑模型易于利用的因素,依据各拟合模型相关系数的大小得到全年以及各季节最优拟合模型,该模型函数可用来反演和监测乌鲁木齐市空气质量指数。  相似文献   
2.
利用全国空气质量指数(Air Quality Index,AQI)、PM_(2.5)地面观测数据、全球数据同化系统GDAS数据和FNL再分析气象资料,研究了2015/2016年冬季南京北郊空气质量变化特征以及环境输送条件和污染物源区。结果表明:以AQI为代表的冬季江淮地区污染程度存在3种典型的污染物跨区域输送路径—西北路径、北方路径和西南路径。西北路径通常发生在蒙古高压较强,且处于平均位置时刻,南京北郊上空有冷平流,不利于污染物扩散;北方路径对应蒙古高压弱,东北附近为弱高压控制,偏北气流将污染物带至南京北郊,如跨海洋,则污染减弱;西南路径对应南京北郊为边界层内反气旋式环流中心,下沉气流十分不利于污染物扩散。影响南京北郊污染的潜在源区主要分布在河北南部、山东西部、河南南部、安徽东部和湖北西部。河北省是重要的污染源区,河北南部和山东西部污染物通过北方路径输送至南京北郊,因此北方路径虽发生污染概率少于其他两种,却是形成南京北郊严重污染的重要路径。河南南部污染物通过西北路径输送。安徽和湖北污染物通过西南路径输送。定量分析表明,平流输送是南京北郊重度污染的重要原因,近地层风速对AQI的平流输送占AQI变化的贡献率超过70%,甚至可达85%。  相似文献   
3.
Ambient air pollution brought by the rapid economic development and industrial production in China has exerted a significant influence on socio-economic activities and public health, especially in the densely populated urban areas. Therefore, scientific examination of regional variation of urban air quality and its dominant factors is of great importance to regional environmental management. Based on daily air quality index (AQI) datasets spanning from 2014 to 2016, this study analysed the spatiotemporal characteristics of air quality across different regions throughout China and ascertained the determinants of urban air quality in disparate regions. The main findings are as follows: (1) The annual average value of the urban AQI in China decreased from 2014 to 2016, indicating a desirable trend in air quality at the national scale. (2) The attainment rate of the urban AQI exhibited an apparent spatially stratified heterogeneity, wherein North China retained a high AQI value. The increase of Moran’s I Index reported an apparent spillover effect among adjacent regions. (3) Both at the national and regional scales, the seasonal tendency of air quality in each year is similar, wherein good in summer and relatively poor in winter. (4) Results drawn from the Geographic Detector analysis show that dominant factors influencing AQI vary significantly across urban agglomerations. Topographical and meteorological variations in urban areas may lead to complex spatiotemporal variations in pollutant concentration. Whereas given the same natural conditions, the human-dominated factors, such as industrial structure and urban form, exert significant impacts on urban air quality.The spatial spillover effects and regional heterogeneity of urban air quality illustrated in this study suggest the governments and institutions should set priority to the importance of regional cooperation and collaboration in light of environment regulation and pollution prevention.  相似文献   
4.
2013年1月持续性霾天气中影响污染程度的气象条件分析   总被引:6,自引:3,他引:3  
利用南京本站气象观测记录、环保局监测数据以及NCEP/NCAR再分析资料,分析2013年1月持续性污染天气过程的大气环流背景,并结合南京地区探空资料、风廓线雷达资料以及激光雷达资料,分析这次持续性污染过程中空气质量属良好、轻度污染、中度污染、重度污染典型个例的大气垂直特征和边界层内气象条件的差异。得到如下结论:2013年1月份北方冷空气活动较弱,南京地区大气层结稳定,近地层风速小,污染物气象扩散条件差。加之近地层以弱偏东风为主,水汽较多,有利于污染物颗粒直径增大。大气垂直结构以及边界层内水平风速均对大气污染程度起到一定影响。AQI与逆温层高度存在显著负相关关系;大气污染时,1000 m以下出现逆温结构,且逆温层越低、越厚,污染程度越大;重度污染时,近地层出现贴地逆温层,厚度为700m左右。逆温层高度下降,PM10颗粒物高浓度区高度也明显下降,近地层污染物浓度对垂直方向上污染物浓度正响应的高度降低。在空气质量良好时, 150~1500m存在风速大值区,且风无空,湍流作用明显,有利于污染物和周围的洁净空气相混合而得到稀释,加速污染物的垂直扩散进程。当中度污染日和典型重度污染日时,150~1500 m之间并不存在大风速区。此外, PM10的300μg·m-3高浓度垂直高度延伸至300 m附近时,近地层PM2.5明显上升至100μg·m-3以上,高浓度区数值越大,近地层PM2.5越大。  相似文献   
5.
王晓玲  岳岩裕  陈赛男  祝赢  陈楠 《气象科技》2018,46(5):1012-1019
基于2015—2016年湖北省环境监测数据和气象资料,分析了3种地形下空气质量指数(AQI)特征及其与气象因子的关系。结果表明:湖北省年空气质量指数时空分布特征为山区低平原高,冬季高夏季低,日高峰值襄阳出现在中午,武汉和宜昌出现在23:00—24:00;与空气质量指数关系较显著的气象因子包括相对湿度、变温、变压、风、降水等,其中降水对污染物的沉降作用跟空气质量等级有关,污染程度越重,需要清洁空气的雨量越大,轻度以上污染时,需要中雨及以上降水才会产生有效清洁,当降水为微量(1mm以下)时,AQI反而会增长;受不同地形影响,不同城市污染天气输入路径不同,襄阳为北风、武汉西北风、宜昌多弱东风扰动,且襄阳大风速出现的频数较高,而宜昌以小风为主。  相似文献   
6.
利用2008—2018年黑龙江省33个观测站的定时观测气象资料,按照国标《大气自净能力等级》(GB/T34299—2017),分析了黑龙江省大气自净能力时间、空间的变化特征,并以省会城市哈尔滨为例,结合逐日空气质量指数(AQI)数据,分析了大气自净能力与AQI的关系。结果表明:2008—2018年黑龙江省平均大气自净能力指数为12.6×104 km·a-1,整体呈上升趋势,2015年以来大气自净能力明显增强。春季大气自净能力最高,秋季次之,冬季最低;空间分布大致呈北低南高分布,包含二、三级两个级别,春季全省各地均处于第二级别,有利于对大气污染物的清除,冬季漠河处于第五级别,不利于对大气污染物的清除;哈尔滨市冬季AQI与大气自净力指数呈显著负相关,考虑了通风量和雨洗作用的大气自净能力与AQI关系密切,直接影响着空气质量状况。  相似文献   
7.
唐杰  杨云芸  李蔚  王晓雷 《气象科技》2021,49(5):762-769
2019年12月12—17日,湖南省出现了一次首要污染物为PM2.5的持续时间长、影响范围大的重污染过程。本文综合应用湖南省环境监测站发布的AQI、逐小时主要污染物浓度和各类气象观测数据资料等,选取长沙为代表站,深入探究本次重污染天气过程气象条件、边界层演变特征等,并探讨污染物的来源和外来源气团移动路径。结果表明:此过程为输入叠加本地的复合型污染,污染积累阶段的弱冷空气打通了污染传输通道,有利于北方污染物南下,污染爆发阶段主要是本地静稳天气叠加上游外来源造成,污染清除阶段湖南地区地面主要是受较强冷空气影响,风力加大,污染物迅速稀释扩散,近地面逆温的存在是此次污染持续并爆发的重要条件。后向轨迹表明,此次重污染天气过程是外来源和本地源共同叠加的结果。  相似文献   
8.
利用气象观测资料、EC-Interim再分析资料、L波段雷达的探空资料以及空气污染资料,对比分析了河南省2015年11月27日至12月25日的3次重污染过程。首先从范围、时间、强度、首要污染物等方面对比分析这3次过程的污染特征。其次对比分析这三次过程的气象条件。结果表明:污染期间平直的环流、弱的气压场、高湿、小风、逆温均有利于重污染的产生; I和Ⅱ污染最重日500 h Pa河南处在弱脊区,Ⅲ处在槽后的西北气流中;偏北风有利于污染物由北向南的传输,造成大面积重污染且污染达到最重;三次重污染过程的结束均是由于西路冷空气入侵造成;风速、湿度、24 h变温和24 h变压与PM_(2. 5)有一定的超前滞后关系,其中超前4 h风速、超前1 h湿度、超前10 h变温、超前19 h变压和PM_(2. 5)浓度的相关性最好。边界层内,三次过程均存在不同程度的逆温,I过程大部分时间同时存在接地逆温和悬浮逆温; Ⅱ和Ⅲ整个过程几乎均有接地逆温存在,而大部分时间不存在悬浮逆温;湿度场的垂直方向上,I过程存在明显的上干下湿特征,而Ⅱ和Ⅲ过程不存在。Ⅱ和Ⅲ都是中西部污染最先清除、其次是北部、南阳和东部地区;而I过程北部最先清除。  相似文献   
9.
利用哈尔滨市2014—2016年逐日空气质量指数(AQI)数据,结合同期气象观测资料,分析了哈尔滨市空气质量的变化特征、主要污染物及与主要气象要素之间的关系。结果表明:近3 a间,哈尔滨空气质量为良级别的天数最多,占47%,达到污染级别的天数占31%,2016年空气质量最佳,优良级别的天数达到284 d,占全年78%;春夏季AQI指数较低,秋冬季AQI指数明显偏高,9月空气质量全年最佳,1月空气质量最差; PM_(2. 5)是造成哈尔滨空气污染的最主要污染物,其次是PM10、NO_2和臭氧8 h(O3-8 h); AQI与气压之间以正相关为主,秋冬季最为显著;与风速主要表现为负相关,冬季尤为显著;与气温的关系受到采暖的干扰差异较大,年尺度及秋冬季呈负相关,月尺度呈正相关;与降水日数呈负相关;与相对湿度冬季表现为显著正相关,而5—9月为负相关。  相似文献   
10.
利用丽水2012年9月—2014年3月主要空气污染物浓度和气象数据,分析丽水空气污染物构成及其与气象因子的相关性。分析结果表明:丽水空气质量优良率约80%,高频首要污染物依次为PM2.5、O38、PM10、NO2;各污染物浓度分布的时间、季节特征明显:早晚高峰时段污染物浓度普遍偏高,冬季—初春是一年中污染较重季节,尤其春节期间PM和SO2浓度急剧上升。各主要污染物质浓度随气象因子的变化各有特点:CO在气温较高、晴朗微风、高层层结稳定的天气条件下浓度较高;NO2在气温适中、湿度较大且无明显降水时浓度较高;SO2则在气温适中、湿度较小、晴朗微风的天气条件下浓度较高;O3则在高温干燥天气时浓度较高;PM在干燥、气温较低、连续晴朗、微风、高层层结稳定时浓度较高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号