首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   10篇
  国内免费   21篇
大气科学   1篇
地球物理   13篇
地质学   48篇
海洋学   3篇
自然地理   7篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2011年   2篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1988年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
The lithium-rich brine in salt lakes is the main raw material of the world’s lithium products, while the continental geothermal fluids with a high salinity often contain a high concentration of lithium. Continental geothermal system is the focus in the study of geothermal formation mechanism. However, less attention is paid to the system due to the complexity of lithology, and the application of lithium isotopes in this field has not been systematically recognized. The newest application and progress of lithium isotope geochemistry in continental geothermal research in recent years were discussed, the problems in this field were put forward, and future research methods and directions were expected. The study of continental geothermal fluids should attach great importance to the application of Li-B-Sr-U multi-isotopic method, and should also be combined with water-rock reaction experiments under different temperature conditions. Moreover, in the future, the research on continental geothermal system should pay more attention to the various sediment/rock lithium isotopic compositions and their spatio-temporal distribution characteristics in the regional or geothermal field’s scales, mineralogy of reservoir rock, and behaviors of lithium isotopes related to the formation of secondary minerals in the process of water-rock interaction, in order to reveal the complex process of fluid evolution in the geothermal system and provide scientific reference for the exploration, exploitation and utilization of lithium resources in the system.  相似文献   
2.
Magmatic-hydrothermal Sn deposits are commonly associated with high silica magmas, but why most global high silica granites do not bear economic Sn ore grades remains unclear. Two crucial factors controlling magmatic-hydrothermal Sn mineralization, including advanced fractionation and depressurization-induced rapid cooling, were revealed in the case study of the Guyong granitic pluton linked with the Xiaolonghe Sn deposit, in the Tengchong block, SW China. The Guyong granitic pluton comprises three petrological facies: less evolved biotite syenogranite, evolved alkali granite and leucogranite, and highly evolved facies (the protolith of greisenized granite). Similar crystallization ages (~77 Ma) and gradual contact between different petrological facies indicate the Guyong granitic pluton records a continuous fractionation process. Monte Carlo-revised Rayleigh fractionation model suggests the fractionation degree of the Guyong pluton is markedly high (>87 wt.%) that can only be achieved by a high initial water (≥4 wt.%) content in the parent granitic magma revealed by rhyolite-MELTS calculation. Advanced degree fractionation causes the first Sn enrichment but it also significantly increases the viscosity of evolved magmas, suppressing the exsolution and transport of hydrothermal fluids. Hence, it must be compensated by the second critical factor: depressurization-induced rapid cooling, reflected by the occurrence of highly metamict zircons in the greisenized granite. The highly metamict feature, indicated by the large full width at half maximum (FWHM) values of zircon ν3(SiO4) peak (>19.5 cm?1), suggests these zircons do not experience thermal annealing but rapidly ascend into a shallow cooling environment. Depressurization-induced rapid cooling facilitates exsolution and transport of hydrothermal fluids, interacting with wall rocks and resulting in Sn mineralization.  相似文献   
3.
Periodical algal blooms result in deposition and release of phosphorus (P) from the sediment into the water. Therefore, during seasonal changes when algal particles begin to settle to the bottom, understanding the behavior and distribution characteristics of the P in sediment is the most important key to manage the water quality of the Saemangeum Reservoir. In this study, the variation of water quality and sediment composition including chlorophyll-a (Chl-a) and P was investigated to determine the interaction between water and sediment. The study focused primarily on algal particle sedimentation that affects the P release and mineralization of sediment. The Chl-a concentration in water showed a sharp decline in October when the algae began to die in the fall, and afterward the concentration of chemical oxygen demand (COD) and total P (TP) in the sediment increased due to the sedimentation of decaying algal particles in November. During the same period of time, the readily bio-available P (RAP) in the sediment showed a drastic increase in the upper region where the Chl-a concentration of water was high. In sequence, the high RAP zone shifted from the upper region to the lower region in the early winter. The RAP shift was considered to be derived from the physical flow of the overlying water from which the decomposing algae settled on the surface of the sediment. The Saemangeum Reservoir was constructed recently; therefore, all the types of inorganic P fractions except soluble reactive phosphorus (SRP) that exist on the bottom surface of the lake and the marsh's sediment layer were not sufficient to significantly influence the overlying water. On the other hand, the released P from the algae was distinct and sensitive to the seasonal change. In conclusion, the algal particle sedimentation was important to control eutrophication rather than P release from the mineralized inorganic P of the sediment surface layer in the Seamangeum Reservoir.  相似文献   
4.
5.
The rare earth elements (REE) have become crucial for modern industry, technology and medicine, with the increase in demand for these elements over the past few years currently being met by relatively few well-known mineral deposits. This lack of a secure supply of the REE has led to increased research into potential alternative sources of these in demand elements. The primary fractionation processes involved in the petrogenesis of highly fractionated high-silica rhyolites can cause the magmas that form these units to become preferentially enriched in the REE, especially in the more valuable heavy REE (HREE), although this is dependent on the mineral assemblages fractionated by the system in question, a factor that is in turn a function of the source and tectonic setting of a given magmatic event. The mineralogy of the REE is also important, with volatile exsolution and vapour-phase activity within highly evolved rhyolite systems potentially having a key role in concentrating the REE and other elements into concentrations (and more importantly potentially acid leachable and therefore processable minerals) that may be economically viable to extract. This, combined with the fact these rhyolites are often enriched in other critical and/or economically important metals (e.g., Y, Nb, Ta, Be, Li, F, Sn, Rb, Th, and U) means that these volcanic units should be considered as potential sources of these critical metals. In addition, the large volume nature of these rhyolites combined with the fact they frequently crop out at the Earth’s surface makes them ideally suited for more economical bulk open pit extraction. This suggests that these high-silica REE-enriched rhyolites should be considered potential REE analogues of bulk-tonnage, low-grade porphyry Cu deposits, warranting further investigation to determine whether these rhyolites are a viable new source of the REE (especially the HREE) and are potential targets for future mineral exploration.  相似文献   
6.
A new method for the characterization of chromophoric colloidal organic matter in seawater has been applied to samples from the Baltic Sea, Kattegatt and Skagerrak seas. Size fractionation of the sample by Flow Field-Flow Fractionation and measurement of the fluorescent and UV absorbing properties of the individual size fractions result in a relative molar mass distribution (RMM) of the optical properties. The RMM distributions have been used to estimate number and weight average relative molar masses, and polydispersity indices. At least two sources of coloured organic matter were identified from the ratio of fluorescence to UV: the Baltic surface water and the Skagerrak deep water. The dominating processes were mixing and dilution, but processes such as photo bleaching of fluorescence are also believed to be important. The RMM distribution derived from UV detection (1150–1300 Dalton) increased with increasing salinity while that derived for fluorescence (1500–1250 Dalton) decreased with increasing salinity. The specific UV absorbance taken as a proxy of the aromaticity of the chromophoric organic material showed decreasing trend with both increasing salinity and increasing UV derived weight average relative molar mass. Increasing polydispersity of the colloidal material was also observed as a function of salinity.  相似文献   
7.
于1992年1月-1993年2月,对从海湾扇贝中提取获得的糖胺聚糖(GAG)用乙醇和溴化十六烷基三甲铵(CTAB)分级分离,并对所得制品用琼脂糖凝胶电泳和高效液相色谱验证,以研究一种简便、快速的分离提纯方法。结果表明,扇贝GAG水溶液在乙醇量60%时分离获得的级分,其GAG-GTAB给合物再用2.0 mol/LNaCl溶液解离得到的主要级分,琼脂糖凝胶电泳和高效液相色谱均显示出单一区带,红外光谱类似干肝素的。证明这一提纯过程是一简便、快速的分离提纯方法。  相似文献   
8.
The major part of the Peninsular Gneiss in Dharwar craton is made up of Trondjhemite-Tonalite-Granodiorite (TTG) emplaced at different periods ranging from 3.60 to 2.50 Ga. The sodic-silicic magma precursors of these rocks have geochemical features characteristic of partial melting of hydrated basalt. In these TTGs, enclaves of amphibolites (± garnet) are abundant. These restites are considered to be the residue of a basaltic crust after its partial melting. A detailed study of these (residue) enclaves reveals textures formed due to the process of partial melting. Major, trace and REE analysis of these residue enclaves and the melt TTGs and microprobe analysis of the coexisting minerals show partitioning of REE and HFSE between the precursor melt of TTGs and the upper amphibolite facies residues. Formation of garnetiferous amphibolites with biotite, Cpx and plagioclase consequent to melting, has squeezed the original MORB type of basaltic crust and given rise to the TTGs, depleted in Y, Yb, K2O, MgO, FeO, TiO2 and enriched in La, Th, U, Zr and Hf. Coevally during the process of melting, the hydrated basalt was depleted in Na2O, Al2O3, LREE, Th, U and enriched in K2O, MgO, Nb, Ti, Yb, Y, Sc, Ni, Cr and Co. Mineral chemistry of co-existing garnet-biotite and amphibole-plagioclase in these amphibolitic (restite) enclaves indicates an average temperature of 700 ± 50° C and pressure of 5 ± 1 Kbar. These data are inferred to indicate that during the garnet stability field metamorphism, effective fractionation of HREE and HFSE has taken place between the restites having Fe-Mg silicates, ilmenites and the extracted melt generated from the MORB type of hydrated basalt. These results are strongly substantiated by the reported melting experiments on hydrated basalts.  相似文献   
9.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   
10.
The 26 December 2004 tsunami covered significant portion of a coastal zone with a blanket of potentially contaminated sediments. In this report are presented results on mercury concentrations in sediments deposited by the tsunami in a coastal zone of Thailand. Since the total mercury concentrations are insufficient to assess mercury mobility and bioavailability in sediment, its fractionation was applied. Sediments were sampled within 50 days after the event and analyzed by sequential extraction method. The procedure of sequential extraction involved five subsequent stages performed with solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH, and aqua regia. The mean concentration of total mercury in sediments was 119 ± 50 ng g−1 dry mass (range 66–230). The fractionation revealed that mercury is mainly bound to the least bioavailable sulphides 75 ± 6% (range 62–86), organomercury compounds 14 ± 7% (range 4–26), and humic matter 9 ± 7% (range 1–27). The lowest contributions bring fractions of water-soluble mercury 0.8 ± 1.0% (range 0.1–3.6) and acid soluble mercury 0.9 ± 0.5% (range 0.2–2.1). Although, the total mercury content is similar in a reference sample and in the tsunami sediments, the highly toxic organomercury fraction contribution is higher in the latter. The results were compared with chemical and sedimentological properties of the sediments but no significant correlations were obtained between them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号