首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4712篇
  免费   1402篇
  国内免费   1874篇
测绘学   222篇
大气科学   3174篇
地球物理   1427篇
地质学   1784篇
海洋学   532篇
天文学   44篇
综合类   228篇
自然地理   577篇
  2024年   9篇
  2023年   93篇
  2022年   150篇
  2021年   193篇
  2020年   214篇
  2019年   235篇
  2018年   226篇
  2017年   251篇
  2016年   258篇
  2015年   296篇
  2014年   363篇
  2013年   534篇
  2012年   355篇
  2011年   366篇
  2010年   285篇
  2009年   394篇
  2008年   384篇
  2007年   476篇
  2006年   418篇
  2005年   361篇
  2004年   303篇
  2003年   260篇
  2002年   246篇
  2001年   172篇
  2000年   153篇
  1999年   146篇
  1998年   125篇
  1997年   133篇
  1996年   95篇
  1995年   106篇
  1994年   106篇
  1993年   78篇
  1992年   48篇
  1991年   38篇
  1990年   26篇
  1989年   21篇
  1988年   23篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1975年   1篇
  1954年   1篇
排序方式: 共有7988条查询结果,搜索用时 15 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
5.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
6.
7.
辽宁南部瓦房店金刚石矿是国内最大的金刚石矿产区,现已发现4处金刚石成矿带、120个岩体。其中金伯利岩岩管24个、岩脉89个、可疑岩体7个,累计提交1221万克拉储量,占全国金刚石储量52%。本文主要对该矿床的金刚石母岩—金伯利岩的岩石地球化学特征进行了全面系统分析,发现金伯利岩中MgO、NiO、Cr 2O 3的含量与TiO 2、Al 2O 3、Na 2O、K 2O、CaO、P 2O 5等偏碱性组分呈正相关关系;Ni、Cr、Co含量与金刚石含量呈正相关,而Ti、Zr、Ba元素含量与金刚石含量呈负相关。通过对瓦房店矿区金刚石中石榴石及单斜辉石包裹体、橄榄石- 石榴石矿物对、石榴石微量元素、尖晶石- 橄榄石等多种地质温、压计归纳得出金刚石矿的来源深度为150~210 km,压力5~7 GPa,温度1083~1261℃,在上述温、压条件下,结合岩浆化学组成,估算金伯利岩具有低氧逸度(fO 2=2. 913×1. 01325×10-6Pa)的特点。结合野外勘查工作,总结了该矿床的地质特征、控矿构造、矿体空间分布规律等要素,认为NEE向和NE向断裂控制着金伯利岩体的展布方向和矿体形态。脉状金伯利岩体一般呈NEE 70°~80°方向展布,严格受NEE至近EW向的密集节理或裂隙控制。提出了金刚石母岩—金伯利岩是由源于上地幔岩浆,在一定的封闭条件下,受构造与岩性双重控制,多期性的爆发与侵入交替作用所形成,并建立了具有较高氧逸度和较高密度的流变性软流圈,通过渗滤熔体浸蚀岩石圈形成金刚石的理想成因模式,希望为下一步找矿工作提供参考。  相似文献   
8.
郭铁龙  高原 《地球物理学报》2020,63(3):1085-1103
青藏高原整体隆升,构造运动与介质变形强烈,然而由于地震观测数据不足,青藏高原内部上地壳各向异性研究一直是一个空白.本研究使用西藏地区的地震台网(2009年5月—2017年5月)的观测资料,利用剪切波分裂研究青藏高原上地壳地震各向异性特征.由于青藏高原固定地震台站分布稀疏,可用于进行剪切波分裂研究的近场地震事件记录稀少,本研究采用地震事件的单台定位技术,对公开的地震目录里没有震源深度数据的地震事件进行震源位置约束,并引入微震模板匹配定位方法,对连续地震波形进行检索,识别出地震目录里遗漏的新的微震(小地震)事件波形.微震识别获得的新地震事件记录是地震目录里报告的地震事件记录的大约6倍,用于补充研究区的剪切波分裂数据分析.通过数据分析,对比快波偏振方向,证实微震识别获得的数据极大地增加了有效数据的数量,提高了结果的可靠性.研究结果表明,雅鲁藏布江缝合带与班公—怒江缝合带之间的拉萨地块东部地区,台站的快剪切波(快波)偏振方向主要受区域应力场影响,快波偏振方向主要是NS或NNE方向,表明了区域最大主压应力方向;但个别地震台站(当雄台)快波偏振方向受原地主压应力影响,其快波偏振方向既不平行于断裂走向也不平行于区域主压应力方向,揭示出地壳介质的局部变形导致的局部应力方向不同于青藏块体里的其他地区.研究区西部的改则、普兰和研究区北部的双湖,快波偏振方向显示与断裂等构造走向一致的特点.研究区东部的昌都和察隅,快波偏振方向除了与断裂走向(或构造线)一致,还与地表运动的方向相同,揭示了青藏块体东部的深部物质可能的运移方向.这个现象虽然还需更多的研究证实,但这个发现的重要启示是,地震各向异性结合地表变形可用于探讨地壳深部物质的运动.  相似文献   
9.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   
10.
ABSTRACT

The Green-Ampt (GA) model has been widely used to evaluate soil water infiltration. While a simple piston profile is commonly used, the wetting profile of a soil changes during infiltration and a quarter-ellipse has been found to better describe its evolution. This study aims to improve the GA model and discuss the model parameters when the quarter-ellipse profile is utilized. The soil column is divided into three zones: saturated, transient and dry. The variable γ is introduced to express the ratio of the saturated zone depth to the wetting front depth. A modified GA model is derived via mathematical methods, but an exact solution is difficult to obtain. Therefore, a simplified (SGA) model is developed via a segmented method. Compared with the measured results, the SGA model is more accurate than the traditional model. Finally, the model parameters are discussed and a value of γ = 0.5 is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号