首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38344篇
  免费   7383篇
  国内免费   7446篇
测绘学   2349篇
大气科学   4660篇
地球物理   8573篇
地质学   18220篇
海洋学   5484篇
天文学   5725篇
综合类   2617篇
自然地理   5545篇
  2024年   84篇
  2023年   440篇
  2022年   1154篇
  2021年   1505篇
  2020年   1569篇
  2019年   1653篇
  2018年   1442篇
  2017年   1576篇
  2016年   1553篇
  2015年   1734篇
  2014年   2349篇
  2013年   2650篇
  2012年   2375篇
  2011年   2566篇
  2010年   2389篇
  2009年   2832篇
  2008年   2767篇
  2007年   2786篇
  2006年   2764篇
  2005年   2385篇
  2004年   2047篇
  2003年   1910篇
  2002年   1623篇
  2001年   1424篇
  2000年   1270篇
  1999年   1109篇
  1998年   943篇
  1997年   726篇
  1996年   605篇
  1995年   568篇
  1994年   487篇
  1993年   442篇
  1992年   308篇
  1991年   244篇
  1990年   189篇
  1989年   170篇
  1988年   121篇
  1987年   70篇
  1986年   60篇
  1985年   64篇
  1984年   43篇
  1983年   34篇
  1982年   28篇
  1981年   20篇
  1980年   21篇
  1979年   14篇
  1978年   19篇
  1977年   16篇
  1971年   4篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
区域中长期地震危险性数值分析研究,需要对其初始构造应力场有所了解,但目前以及未来一段时期内仍无法直接观测到深部孕震层区域的应力场状况.本文首先基于岩石库仑-摩尔破裂准则,利用青藏高原及邻区百年历史范围内的强震信息,来反演估算该区域的初始应力场.然后,考虑区域构造应力加载及强震造成的应力扰动共同作用,重现了历史强震的发展过程.然而对于初始应力场的反演估算,本文仅能给出区域其上下限的极限值,并不能唯一确定.因此,采用Monte Carlo随机法,进行大量独立的随机试验计算,生成数千种有差异的区域初始应力场模型,且保证每种模型都能令历史强震有序发生,但未来应力场演化过程不尽相同.最后,将数千种模型在未来时间段内的危险性预测结果集成为数理统计结果,据此给出了区域未来的地震危险性概率分布图.初步结果显示未来强震危险性概率较高地区集中在巴颜喀拉块体边界及鲜水河断裂带地区.  相似文献   
2.
Knowledge about the stochastic nature of heterogeneity in subsurface hydraulic properties is critical for aquifer characterization and the corresponding prediction of groundwater flow and contaminant transport. Whereas the vertical correlation structure of the heterogeneity is often well constrained by borehole information, the lateral correlation structure is generally unknown because the spacing between boreholes is too large to allow for its meaningful inference. There is, however, evidence to suggest that information on the lateral correlation structure may be extracted from the correlation statistics of the subsurface reflectivity structure imaged by surface-based ground-penetrating radar measurements. To date, case studies involving this approach have been limited to 2D profiles acquired at a single antenna centre frequency in areas with limited complementary information. As a result, the practical reliability of this methodology has been difficult to assess. Here, we extend previous work to 3D and consider reflection ground-penetrating radar data acquired using two antenna centre frequencies at the extensively explored and well-constrained Boise Hydrogeophysical Research Site. We find that the results obtained using the two ground-penetrating radar frequencies are consistent with each other, as well as with information from a number of other studies at the Boise Hydrogeophysical Research Site. In addition, contrary to previous 2D work, our results indicate that the surface-based reflection ground-penetrating radar data are not only sensitive to the aspect ratio of the underlying heterogeneity, but also, albeit to a lesser extent, to the so-called Hurst number, which is a key parameter characterizing the local variability of the fine-scale structure.  相似文献   
3.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
4.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
5.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   
6.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
7.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
8.
SBAS-InSAR technology is characterized by the advantages of reducing the influence of terrain-simulation error, time-space decorrelation, atmospheric error, thereby improving the reliability of surface-deformation monitoring. This paper studies the early landslide identification method based on SBAS-InSAR technology. Selecting the Jiangdingya landslide area in Zhouqu County, Gansu Province as the research area, 84 ascending-orbit Sentinel-1A SAR images from 2015 to 2019 are collected. In addition, using SBAS-InSAR technology, the rate and time-series results of surface deformation of the landslide area in Jiangdingya during this period are extracted, and potential landslides are identified. The results show that the early landslide identification method based on SBAS-InSAR technology is highly feasible and is a better tool for identifying potential landslides in large areas.  相似文献   
9.
利用完备经验模态分解方法(CEEMD)对我国沿海地区6个GNSS基准站(2010—2018)的高程时序数据进行了处理分析。结果表明:CEEMD在高程时间序列分析中具有一定的优越性,可准确分解出各GNSS站高程时序中存在的周、月、季节、年等变化周期项,其中周年运动是主要贡献项,各站高程时间序列的短周期变化与潮汐变化周期具有密切关联性;沿海GNSS站的地面沉降既具有区域的一致性,又存在区域间差异性,其中D区DBJO、DZJJ站呈现先下降后上升的趋势,N区NZUH、NWZU站呈下降趋势,B区的BZMW呈上升趋势,而同海区的BLHT站则呈显著的下降趋势。  相似文献   
10.
陆基增强系统(GBAS)是利用载波相位平滑伪距差分修正实现对导航辅助定位的. 其中,平滑时间常数是影响载波相位平滑伪距精度的关键参数. 本文分析研究了不同平滑时间下电离层时间梯度和空间梯度对Hatch滤波的影响. 在结合电离层时空梯度和多径效应引起的滤波总误差方差的基础上,推导出自适应的最优平滑时间常数. 分别对GBAS静态和动态两种环境下的定位误差进行实验,实验结果表明,采用本文推导出的自适应平滑时间常数降低了GBAS伪距测量误差,从而使定位精度得到增强.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号