首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   15篇
  国内免费   17篇
测绘学   1篇
大气科学   25篇
地球物理   14篇
地质学   5篇
海洋学   3篇
天文学   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2013年   3篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
南海夏季风爆发时间在1993/1994年出现显著的年代际提早, 探讨了大气要素场的不同时间尺度分量季节演变的年代际变异对南海夏季风爆发时间的年代际变异的相对影响作用。南海夏季风爆发时间的年代际提早与南海季风区对流层经向温度梯度季节性逆转的年代际提早有密切联系。南海季风区5月中对流层经向温度梯度年代际增强主要由季风区北部温度的年代际显著增暖造成。季内分量和季节以上分量对1993年之前南海季风区经向温度梯度逆转及加强时间偏晚的作用同等重要。经向温度梯度距平的季节以上分量主要源于季风区北部温度相应分量的贡献, 而季节内分量则主要由南部相应分量影响所致, 并由25~90 d分量所主导。季节以上分量对1994年之后南海季风区经向温度梯度逆转及加强时间偏早的贡献要大于季节内分量的贡献。经向温度梯度距平的季节以上分量和季内分量对总距平的正贡献都主要来自于季风区北部温度相应分量。两种季内低频分量对温度梯度季内分量的贡献率相当, 10~25 d分量主要由南海北部温度相应分量所主导, 25~90 d分量对总距平的正贡献也源自北部分量。准双周振荡分量对各年代南海夏季风爆发具有明显的触发作用。   相似文献   
2.
Agricultural productivity in South Africa is negatively affected by drought as a result of frequent periodic dry spells and increasing crop water demands resulting in poor crop development and low yields. Thus, we embarked on this study which aims at investigating dry spell occurrences in relation to growing season of maize in the Luvuvhu River Catchment. Daily rainfall data (1945–2014) from 12 stations which represent the catchment fairly well was utilized in this study. Three consecutive planting dates were staggered based on three consecutive onsets of the rainy season. Dry spells were categorized into three groups: short, medium and long dry spells. The data was then subjected to theoretical distribution fitting using the Anderson–Darling goodness-of-fit test; and probabilities of occurrence were computed using a probabilistic model that best fits the data. Trend analysis was performed on the frequency of dry spells per growing period using the non-parametric Spearman's rank correlation test. Out results indicated high probabilities (≥80%) of short dry spells at all the stations irrespective of the timing of planting. Further analysis revealed that a risk of yield reduction with planting following the first onset of rains was higher than that with planting following the second and third onsets. In order to minimize this risk, farmers can be advised to plant between mid-November to mid-December. Trend analysis indicated no trend for all the various dry spell lengths except for Thohoyandou with a decreasing trend and Sigonde with a weak increasing trend in long dry spells. Such findings can be used to describe drought conditions for improvement of agricultural productivity and food security, in a given area.  相似文献   
3.
华南前汛期开始和结束日期的划分   总被引:16,自引:0,他引:16       下载免费PDF全文
本文利用48年(1957~2004年)中国站点逐日降水资料和同期NCEP/ NCAR逐日再分析资料,研究了华南前汛期的开始和结束时间的划分问题.首先,选择了研究华南前汛期问题的区域和代表站点,然后对降水量、水汽(可降水量,水汽通量,水汽通量散度)、垂直速度和假相当位温等物理量的演变特征进行分析,发现:前汛期起、止前后上述要素均有阶段性的突变.其中4月第1候(19候)是华南前汛期的开始,可降水量、水汽通量和假相当位温等增加显著,对流开始活跃,水汽通量散度也由辐散变为辐合,降水量明显增加.但4月份总体雨量不强,主要为锋面降水.5月份随夏季风爆发,水汽继续增加,对流活跃,进入季风降水阶段;夏季风降水盛期时段主要集中在6月份.6月第4候(34候)前汛期结束,各降水指标骤减.然后根据降水和环流指标,提出了华南前汛期开始和结束日期的划分标准,定义了逐年的开始和结束日期.最后对华南前汛期开始期之前、之后以及结束期之前、之后的大气环流背景做了对比分析.指出,前汛期开始前,环流形势有利于华南地区增暖增湿;开始期以后则有利于冷空气南下,造成连续降水,使华南进入前汛期.而前汛期的结束,则是由于东亚大气环流的季节调整,尤其是西太平洋副热带高压的第一次北跳所造成的.  相似文献   
4.
5.
南海夏季风爆发前后亚洲地区的大尺度环流突变   总被引:9,自引:1,他引:9  
用1980—1986年的ECMWF资料分析了南海季风爆发前后大气环流突变的平均特征。结果表明:南海季风的爆发一般发生在5月10日前后,大气环流出现一次明显突变──高空南亚高压由10—15°N骤然北跳到15—20°N,南海北部西风转为东风;低空南海北部及附近地区西南风迅速加强并向东扩展,而中纬地区的偏北风也相应加强南压,青藏高原东南部到中国长江中下游一带为温度、湿度梯度大值区;中国西南地区出现低压环流。同时,青藏高原东南部及中国东部平原地区对流层大气发生急速增暖,大气热源和水汽汇明显增强。在南海季风爆发后南海北部大气热源亦显著增强,但比风场的突变落后5—10天,而西沙海温的变化与季风爆发却比较一致。另外,地形对大气热源的分布有一定的影响,青藏高原东南坡的加热对南海季风的爆发可能比较重要。  相似文献   
6.
In this article, the phenomenon of generation of corona discharges on the tops of trees and plants is described. In the first part of the text, the conditions for generation of this electric field which leads to formation of corona discharge and transfer of electric charge between atmosphere and Earth, are discussed. Experimental results of the onset voltage and its dependence on the discharge parameters are presented. The coincidence between released species from corona burning point and surrounding atmosphere is also discussed. Equation for the calculation of critical intensity of the electric field and onset voltage in dependence on radius of the tip are also discussed and compared with experimental data and equations for current–voltage characteristics are described. The attempt to explain differences between theory and measured data is proposed.  相似文献   
7.
亚洲夏季风爆发的基本气候特征分析   总被引:3,自引:0,他引:3  
柳艳菊  丁一汇 《气象学报》2007,65(4):511-526
利用统一的亚洲热带夏季风爆发指标,重新制作了季风爆发日期的推进图,确证了亚洲热带夏季风最早在热带东印度洋与中印半岛中南部爆发的观点,这发生在26候(5月10日前后),28候(5月20日前后)在南海地区相继爆发,这两个地区的爆发是属同一季风系的不同爆发阶段。以后通过对海陆热力对比、季节内振荡等多方面的分析,对夏季风的爆发机制问题进行了深入的研究,提出了气候学意义下影响亚洲热带夏季风爆发的关键影响因子。在此基础上,给出了夏季风最早在热带东印度洋-中印半岛-南海地区爆发机理的一种概念模式图,即大气环流的季节进程是季风爆发的背景条件;而中印半岛及其邻近地区对流活动和感热与潜热加热的迅速增强与北推、印缅槽的强烈加深,以及高原东部地区的西风暖平流作用是夏季风爆发的主要驱动力,其结果是使经向温度梯度首先在这个地区反向并建立强的上升运动区,使热带季风和降水迅速发展和加强;来自不同源地的低频30—60 d和10—20 d季节内振荡的锁相则是夏季风爆发的一种触发因子,正是这些因子的共同作用导致了亚洲热带夏季风在这个地区的最早爆发。  相似文献   
8.
本文从海面高度异常与海洋热含量变化的线性关系出发,利用1992~2004年多颗卫星融合海面高度资料,对南海海域的热含量异常进行了计算.这一计算结果与基于气候态温盐资料计算的热含量季节变化具有很好的一致性.本文得到的结果还显示南海热含量异常具有明显的长周期变化,表现为:1992~1998年基本保持比较稳定的年际变化特征,1998年之后,热含量出现明显的跃变,这一跃变一直维持到2001年,在2002年开始出现热含量的递减趋势.对此时间序列进行谐波分析可以看出,南海热含量异常除了具有显著的年变化周期外,还存在明显的0.5、1.5、2.4、4年和6年的变化周期.进一步分析还发现,南海12月份热含量异常可以作为南海夏季风爆发的一种预报指标.  相似文献   
9.
The Sea Surface Temperatures (SST) and currents are simulated over the north Indian Ocean, during the onset phase of southwest monsoon for the three years 1994, 1995, and 1996, using daily Special Sensor Microwave/Imager (SSM/I) winds and National Center for Environmental Prediction (NCEP) heat fluxes as forcings in the 2½ layer thermodynamic numerical ocean model. The results are discussed for the 30-day period from 16 May to 13 June for all the three years, to determine the ocean state during the onset phase of SW monsoon. The maximum variability in the simulated SST is found along the Somali coast, Indian coasts, and equatorial regions. The maximum SST in the North Arabian Sea is found to be greater than 30°C and minimum SST in the west equatorial region is 25°C during the onset phase of all three years. Model SSTs are in agreement with Reynolds SST. SST gradients in the north-south as well as in the east-west directions, west of 80°E are found to change significantly prior to the onset. It can be inferred from the study that the SST gradient of 2.5°C/2000 km is seen due north and due west of the region 2° - 7°S, 60° - 65°E, about 8 to 10 days prior to the arrival of SW monsoon near Kerala coast. Upper and lower layer circulation fields do not show prominent interannual variability.  相似文献   
10.
Onset of scour below pipelines and self-burial   总被引:1,自引:0,他引:1  
This paper summarizes the results of an experimental study on the onset of scour below and self-burial of pipelines in currents/waves. Pressure was measured on the surface of a slightly buried pipe at two points, one at the upstream side and the other at the downstream side of the pipe, both in the sand bed. The latter enabled the pressure gradient (which drives a seepage flow underneath the pipe) to be calculated. The results indicated that the excessive seepage flow and the resulting piping are the major factor to cause the onset of scour below the pipeline. The onset of scour occurred always locally (but not along the length of the pipeline as a two-dimensional process). The critical condition corresponding to the onset of scour was determined both in the case of currents and in the case of waves. Once the scour breaks out, it will propagate along the length of the pipeline, scour holes being interrupted with stretches of soil (span shoulders) supporting the pipeline. As the span shoulder gets shorter and shorter, more and more weight of the pipeline is exerted on the soil. In this process, a critical point is reached where the bearing capacity of the soil is exceeded (general shear failure). At this point, the pipe begins to sink at the span shoulder (self-burial). It was found that the self-burial depth is governed mainly by the Keulegan–Carpenter number. The time scale of the self-burial process, on the other hand, is governed by the Keulegan–Carpenter number and the Shields parameter. Diagrams are given for the self-burial depth and the time scale of the self-burial process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号