首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78256篇
  免费   15075篇
  国内免费   17798篇
测绘学   8032篇
大气科学   13542篇
地球物理   14806篇
地质学   38495篇
海洋学   10647篇
天文学   8311篇
综合类   5223篇
自然地理   12073篇
  2024年   160篇
  2023年   961篇
  2022年   2712篇
  2021年   2979篇
  2020年   3121篇
  2019年   3207篇
  2018年   2833篇
  2017年   3219篇
  2016年   3109篇
  2015年   3565篇
  2014年   4570篇
  2013年   4906篇
  2012年   5023篇
  2011年   5446篇
  2010年   4553篇
  2009年   5757篇
  2008年   5652篇
  2007年   5750篇
  2006年   5593篇
  2005年   5044篇
  2004年   4527篇
  2003年   4089篇
  2002年   3534篇
  2001年   3110篇
  2000年   2907篇
  1999年   2607篇
  1998年   2256篇
  1997年   1734篇
  1996年   1504篇
  1995年   1339篇
  1994年   1252篇
  1993年   1047篇
  1992年   723篇
  1991年   604篇
  1990年   404篇
  1989年   341篇
  1988年   290篇
  1987年   162篇
  1986年   100篇
  1985年   92篇
  1984年   54篇
  1983年   36篇
  1982年   47篇
  1981年   24篇
  1980年   34篇
  1979年   27篇
  1978年   43篇
  1977年   22篇
  1976年   5篇
  1954年   25篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
2.
2018年9月8日,云南省墨江县发生MS5.9地震并伴随一系列余震,探究该地震周围的应力场对于理解该地震的发生机制和后续地震的发展趋势具有着重要的参考意义.本研究收集了震源及其邻区中前人研究和Global CMT所给出的震源机制资料,对该地区进行了构造应力场反演,并同时利用反演得到的应力张量模拟墨江地区的震源机制解表现.结果表明:(1)在应力轴整体分布上,自西向东σ1轴(压轴)从NNE-SSW向逐渐转向NNW-SSE向,σ3轴(张轴)从WWN-EES向逐渐转向WWS-EEN向,张轴呈弧形分布,压轴呈放射状分布.(2)在应力轴倾伏角上,研究区域内的压应力轴和张应力轴倾伏角都比较小,即两轴均接近水平.(3)R值分布大体是在东南部相较于西北部大,结合当地地质背景分析得到,物质逃逸自西北向东南呈逐渐变缓的趋势.(4)利用反演得到的应力张量和应力状态计算墨江地震震源区的相对剪应力和相对正应力大小.由此推测,墨江地震恰好发生在相对剪切应力值和相对正应力正值最大的节面上.从而可以确定墨江地震的发震节面的基本参数:走向216.32°,倾角86.91°,滑动角0.27°,相对剪应力值0.9,相对正应力值0.3.本研究为此次墨江地震的发震背景和地震动力学研究提供了基础性资料.  相似文献   
3.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
4.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
5.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
6.
7.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
8.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
9.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
10.
高强钢组合偏心支撑钢框架是一种新型的抗震结构体系,为分析其抗震性能,利用ABAQUS有限元软件建立了简化分析模型。在验证该简化模型合理有效的基础上,建立了某十层算例的整体模型,施加竖向荷载的同时施加水平倒三角形循环荷载作用,进而分析了该算例的滞回性能。研究表明:本文提出的简化分析模型不仅可以较准确的模拟该结构体系的延性和抗侧刚度,还可以有效预测结构的变形分布和非线性性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号