首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   885篇
  国内免费   1448篇
测绘学   41篇
大气科学   2542篇
地球物理   801篇
地质学   612篇
海洋学   195篇
天文学   3篇
综合类   96篇
自然地理   312篇
  2024年   9篇
  2023年   69篇
  2022年   98篇
  2021年   151篇
  2020年   144篇
  2019年   174篇
  2018年   159篇
  2017年   163篇
  2016年   142篇
  2015年   185篇
  2014年   210篇
  2013年   380篇
  2012年   222篇
  2011年   204篇
  2010年   157篇
  2009年   218篇
  2008年   186篇
  2007年   263篇
  2006年   249篇
  2005年   207篇
  2004年   144篇
  2003年   127篇
  2002年   109篇
  2001年   80篇
  2000年   77篇
  1999年   61篇
  1998年   71篇
  1997年   64篇
  1996年   57篇
  1995年   57篇
  1994年   57篇
  1993年   31篇
  1992年   16篇
  1991年   18篇
  1990年   10篇
  1989年   6篇
  1988年   12篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有4602条查询结果,搜索用时 15 毫秒
1.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
5.
根据Aqua MODIS 2级云产品和Cloudsat的2级产品资料,结合降水数据和MODIS L1B级辐射率数据,对发生在京津冀地区夏季的三次强降水过程中冰云的宏微观物理量的特征进行分析,并探究这些物理量和降水强度的关系。结果表明:在水平分布中,强降水过程中降水强度高值区内云相为冰云,冰云云顶高度在8~17 km,冰云粒子有效半径、冰云光学厚度、冰水路径分别最高可达60 μm、 150、 5 000 g?m-2;冰云光学厚度、冰水路径、冰云云顶高度随降水强度增大而增大。在垂直分布中,冰云主要分布在3.5 km以上,发生强降水站点的冰云为深对流云,冰云粒子有效半径、冰水含量、冰云粒子数浓度分别最高可达150 μm、 3 000 mg?m-3 、 500 L-1;冰云粒子有效半径高值区存在于云层中下部,且随高度上升而减小,冰云粒子数浓度高值区存在于云层中上部,且随高度上升而增加,冰水含量高值区则存在于云层中部;冰云粒子有效半径、冰水含量、冰云粒子数浓度在9 km以上随降水强度增大而增大。  相似文献   
6.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   
7.
This study deals with a unusual cooling event after Typhoon Mujigea passed over the northern South China Sea(SCS) in October 2015. We analyze the satellite sea surface temperature(SST) time series from October 3 to 18,2015 and find that the cooling process in the coastal ocean had two different stages. The first stage occurred immediately after typhoon passage on October 3, and reached a maximum SST drop of –2℃ on October 7 as the usual cold wake after typhoon. The second stage or the unusual extended cooling event occurred after 7d of the typhoon passage, and lasted for 5d from October 10 to 15. The maximum SST cooling was –4℃ and occurred after 12d of typhoon passage. The mechanism analysis results indicate that after landing and moving northwestward to the Yunnan-Guizhou Plateau(YGP), Typhoon Mujigea(2015) met the westerly wind front on October 5. The lowpressure and positive-vorticity disturbances to the front triggered meridional air flow and low-pressure trough,thus induced a katabatic cold jet downward from the Qinghai-Tibet Plateau(QTP) passing through the YGP to the northwestern SCS. The second cooling reached the maximum SST drop 4d later after the maximum air temperature drop of –9℃ on October 11. The simultaneous air temperature and SST observations at three coastal stations reveal that it is this katabatic cold jet intrusion to lead the unusual SST cooling event.  相似文献   
8.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
9.
The grain size distribution (GSD) of sediment in comparison with the original soil GSD is discussed under different slopes (5, 15 and 25%) and rainfall intensities (30, 60 and 90 mm h–1 with respective duration of 30, 15 and 10 min) but identical runoff (15 mm). The sediment quantification was carried out by raindrop-induced flow transport (RIFT) or/and transport by flow (FT) using a rainfall simulator and a 6 × 1 m2 erosion plot and a silt loam. The results show a high degree of enrichment for size classes of 2–4 and 4–8 μm and a high degree of depletion for size classes of >63 μm under different slopes and rainfall intensities. In addition, the results show that the experimental enrichment ratio (ER) for particle size <16 μm under different slopes and rainfall intensities was greater than 1, while the ER for particle size >32 μm was less than 1.  相似文献   
10.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号