首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   162篇
  国内免费   151篇
测绘学   2篇
大气科学   337篇
地球物理   35篇
地质学   156篇
海洋学   63篇
综合类   18篇
自然地理   20篇
  2024年   2篇
  2023年   4篇
  2022年   12篇
  2021年   18篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   18篇
  2016年   19篇
  2015年   21篇
  2014年   20篇
  2013年   38篇
  2012年   33篇
  2011年   38篇
  2010年   24篇
  2009年   37篇
  2008年   28篇
  2007年   34篇
  2006年   27篇
  2005年   24篇
  2004年   23篇
  2003年   22篇
  2002年   16篇
  2001年   14篇
  2000年   11篇
  1999年   11篇
  1998年   17篇
  1997年   8篇
  1996年   15篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有631条查询结果,搜索用时 31 毫秒
1.
2.
岩溶区土地石漠化已成为中国西部继沙漠化和水土流失后的第三大生态问题,近年来岩溶槽谷区石漠化表现出增加趋势。通过获取槽谷区石漠化、岩性、坡度、海拔、降雨量、土地利用、人口密度和第一产业生产总值等数据,利用GIS空间分析功能和地理探测器模型,探讨了岩溶槽谷区石漠化空间分布特征及驱动因子。主要结论为:① 岩溶槽谷区总石漠化面积为21323.7 km 2,占研究区土地面积的8.3%,其中轻度、中度和重度石漠化面积分别是11894.8 km 2、8615.8 km 2和813.1 km 2,分别占石漠化面积的55.8%、40.4%和3.8%;② 从石漠化的空间分布来看,槽谷区石漠化主要发生在连续性灰岩中,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的22.1%、22.4%和1.9%;槽谷区石漠化主要发生在15°~25°的坡度范围,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的27.1%、18.2%和2.3%;从海拔来看,主要分布于400~800 m范围内,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的24.9%、18.4%和0.2%;从土地利用类型来看,主要发生于山地旱地中;从人口密度来看,集中分布于100~200人/km 2中;从第一产业生产总值来看,集中分布于25亿~50亿元中;③ 地理探测器的因子探测器揭示了岩性(q = 0.58)、土地利用(q = 0.48)和坡度(q = 0.42)3个因子是槽谷区石漠化形成的主要驱动因子,交互式探测器进一步揭示了岩性与土地利用类型(q = 0.85)、坡度与土地利用类型的组合(q = 0.75)共同驱动槽谷区石漠化的形成。  相似文献   
3.
新疆夏季变湿的大气环流异常特征   总被引:14,自引:3,他引:11  
利用1961—2003年NCEP/NCAR再分析资料和中国气象局整编的新疆夏季(6~8月)月降水量资料,分析了新疆夏季1971—1986年干旱期和1987—2003年湿润期的大气环流变化异常特征.结果表明:在平均环流场上,中亚巴尔喀什湖槽及上下游地区脊的增强是新疆地区夏季变湿的环流场特征之一,且中亚巴尔喀什湖槽随高度增加强度明显增强,200 hPa达到最强;源于低纬阿拉伯海向北直至中亚对流层低层偏南的强气流是湿润期环流异常、降水增多的又一特征,也是水汽重要来源之一;中亚上空高空急流轴南压是新疆夏季湿润期与干旱期高空急流最重要的差异特征.  相似文献   
4.
2020年7月西北太平洋和南海出现了史无前例的“空台”事件。利用NCEP再分析数据集、中国气象局(CMA)台风最佳路径等资料研究了此次“空台”现象的大尺度环流背景及动力和热力学特征。使用台风潜在生成指数(DGPI)分析发现2020年7月大尺度环流背景不利于台风生成,环流系统的异常通过影响对流层垂直风切变和垂直运动限制了台风的活动。2020年7月马斯克林高压较常年明显偏西偏弱,导致索马里急流强度减弱,越赤道气流不活跃,菲律宾以东洋面和南海海域盛行一致的偏东气流,历史同期活跃在该区域的季风槽无法建立,从而不利于热带扰动的生成。北半球极涡主体偏向西半球一侧,影响东半球冷空气势力较弱,副热带高压位置偏西;南亚高压较历史同期偏强且偏东,其东侧强盛的偏东气流将洋中槽截断,在西北太平洋区域出现反气旋性环流,该区域下沉气流增强,导致副热带高压强度增强,对流层中层强烈的下沉气流抑制了台风的生成和发展。此外,受中高层环流系统异常的影响,7月菲律宾吕宋岛以东洋面和南海地区环境垂直风切变较常年偏高2~4 m/s,南海部分海域偏高达4~8 m/s,同时该区域内异常偏强的下沉气流导致对流层低层相对湿度偏低,大气层结处于较为稳定的状态,动力和热力条件均不利于热带扰动的进一步发展。   相似文献   
5.
Concurrence of low temperature,precipitation and freezing weather in an extensive area would cause devastating impacts on local economy and society.We call such a combination of concurrent disastrous weather“extensive coldprecipitation-freezing”events(ECPFEs).In this study,the ECPFEs in southern China(15°?35°N,102°?123°E)are objectively defined by using daily surface observational data for the period 1951?2013.An ECPFE in southern China is defined if the low temperature area,precipitation area and freezing area concurrently exceed their respective thresholds for at least three consecutive days.The identified ECPFEs are shown to be reasonable and reliable,compared with those in previous studies.The circulation anomalies in ECPFEs are characterized by a large-scale tilted ridge and trough pairing over mid-and high-latitude Eurasia,and the intensified subtropical westerlies along the southern foot of the Tibetan Plateau and the anomalous anticyclonic circulation over the subtropical western Pacific.Comparative analysis reveals that the stable cold air from the north and the warm and moist air from the south converge,facilitating a favorable environment for the concurrence of extensive low-temperature,precipitation and freezing weather.  相似文献   
6.
任丽  关铭  李有缘  王深义 《气象科技》2019,47(6):959-968
本文使用常规观测资料、卫星云图、自动气象站降水量以及0.25°×0.25°的NCEP/NCAR再分析资料,对出现在东北地区北部受不同系统影响的连续2d暴雨过程的热力和动力场结构特征展开研究。结果表明:24日为暖锋锋生暴雨,暴雨范围大;25日为台风暴雨,暴雨出现在台风移动路径上,为狭长带状。暴雨是由MCS活动造成的,每次短时强降水均与TBB低值中心相对应,台风倒槽内的MCS强度比暖锋云系内的MCS弱,但是降水强度却更大。台风安比携带大量暖湿空气,其东侧的低空急流向北输送热量和水汽,水汽辐合集中在边界层内,台风暴雨的水汽辐合强度比暖锋暴雨更强烈,所造成的雨强更大。暖锋暴雨期间,小兴安岭迎风坡地形的辐合抬升作用明显;高层强辐散及地形辐合抬升作用对暴雨有较大贡献。台风暴雨期间,低空辐合,特别是水汽辐合作用对暴雨有较大贡献;辐合区位于台风倒槽附近,倒槽表现为冷锋性质。  相似文献   
7.
使用中国气象局热带气旋资料中心的热带气旋最佳路径数据集和NCEP/NCAR再分析资料提供的月平均数据,对北上影响山东的热带气旋(tropical cyclone,TC)及其造成的极端降水进行统计分析,并揭示了有利于 TC北移影响山东的大气环流特征。结果表明:影响山东的 TC主要出现 于 6—9 月,其中盛夏时节(7、8 月)TC对山东影响最大;TC影响山东时,强度主要为台风及以下等 级,或已发生变性;TC会引发山东极端降水事件,TC极端降水多出现在夏秋季(7—9 月),其中8月的占比最大,9月次之,TC降水在极端降水事件中的占比约为 10%,但年际变化大,有些年份占比达60%以上,特别是1990 年以来 TC对极端降水的贡献显著增强;影响山东的 TC主要生成于西 北太平洋,多为转向型路径;当500 hPa位势高度异常场呈太平洋一日本遥相关型的正位相时,TC更易北上影响山东,此时西北太平洋副热带高压位置偏北,其外围气流会引导TC北上转向,对华东地区造成影响;850 hPa上,南海至西北太平洋存在异常气旋式环流,对流活跃,夏季风环流和季风槽加强,有利于TC的生成和发展,同时,华东、华南上空有异常上升运动,涡度增大,垂直风切变减小,水汽充沛,TC登陆后强度能得到较好的维持。  相似文献   
8.
应用常规气象观测资料、NCEP 1°×1°再分析资料,选取登陆北上山东地点相近但暴雨落区分别位于台风中心西北侧和东北侧的两个台风,分析暴雨落区相对台风中心非对称分布的成因。结果表明:台风进入中纬度以后,0421号台风“海马”位于高空深槽前,与西风槽相互作用,西风槽携带的冷空气从西北侧侵入台风环流,产生湿斜压锋区强迫抬升、冷暖空气交绥、水汽辐合等因素造成暴雨,暴雨趋于出现在台风中心的西北侧,为高比湿舌前方、较强水汽辐合区与相当位温密集区叠加的区域;而0509号台风“麦莎”与副热带高压相互作用,引起涡度及涡度平流的非对称改变,暴雨区与500 hPa正涡度区或正涡度平流相对应,暴雨趋于出现在台风中心的东北侧,为强正涡度平流区与水汽辐合叠加的区域。  相似文献   
9.
夏季平流层盛行强东风,Rossby波能量难以从对流层向上传播至平流层,而冬季平流层盛行西风,Rossby波能量容易上传,因此以往对Rossby波能量向平流层传播的研究多考虑冬季的情况.而事实上,因为夏季高原上空南亚高压反气旋环流,并非只有强东风存在,所以Rossby波能量也可能在南亚高压区向上传播,从而影响平流层的温度、风场及大气成分等.因此,本文利用ERA-interim逐日再分析资料,分析了1979—2015年夏季南亚高压区Rossby波能量穿越对流层顶传播的特征与机制.结果表明:Rossby波能量可以从南亚高压西北部的窗口区上传至平流层,最高可到达平流层顶,而在南亚高压的其他部分,Rossby波能量均不能穿越对流层顶上传或穿越对流层顶后无法继续上传.南亚高压西北区Rossby波能量可以穿越对流层顶传播的原因是盛行西风,且西风急流出现的频率很小,同时涡动热量通量异常引起的垂直分量的第一项对其上传有很大贡献.南亚高压东北区也盛行西风,然而Rossby波能量不能向上穿越对流层顶的原因是强西风出现频率较高,且温度脊与高度脊位相相近,不利于上传.南亚高压南部均盛行东风,在平流层中下层均为稳定层结,因此Rossby波能量很难上传.南亚高压西南区在对流层位于青藏高原环流的伊朗高原下沉区附近,层结稳定,并且温度脊超前于高度脊,所以Rossby波能量很难上传.而南亚高压东南区在对流层位于南海-西太平洋热带幅合带,层结不稳定,存在Rossby波能量较弱的上传,达到对流层顶后无法继续上传,该区域温度脊落后于高度脊的温压场配置也为Rossby波能量在对流层内的传播提供了条件.  相似文献   
10.
王凯  张成平  王梦恕 《岩土力学》2011,32(9):2771-2777
在目前众多的预测隧道开挖引起的地层变形的方法中,经验公式法最为简便,也是目前应用最为广泛的方法,为此介绍了多种预测隧道开挖引起的地层沉降和水平位移的经验公式。并以青岛胶州湾海底隧道不对称双连拱断面为工程背景,由位于主隧道与匝道交叉口段的典型断面ZK2+800.78的几何参数和地质资料构建三维数值计算模型,采用岩土体工程通用有限差分软件FLAC3D进行动态施工三维数值模拟。通过对FLAC3D模拟和各经验公式计算的地层沉降和水平位移的对比分析,评价了FLAC3D软件和各经验公式在不对称双连拱隧道断面地层变形预测中的适用性。结果表明,当地层埋深较浅时,不同埋深地层的地层沉降和水平位移可近似用各经验公式来预测;但随着地层埋深的增大,各经验公式预测的偏差不断增大;经验公式只能对单一地层、单一隧道的地层变形进行估算,存在明显的局限性,而在预测复杂地质条件下不对称双连拱隧道断面开挖引起的地层变形时,FLAC3D较各经验公式有明显的优势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号