首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92210篇
  免费   17248篇
  国内免费   19838篇
测绘学   10877篇
大气科学   16506篇
地球物理   19829篇
地质学   42205篇
海洋学   11090篇
天文学   9110篇
综合类   6213篇
自然地理   13466篇
  2024年   207篇
  2023年   1115篇
  2022年   2922篇
  2021年   3456篇
  2020年   3678篇
  2019年   4026篇
  2018年   3416篇
  2017年   4080篇
  2016年   4096篇
  2015年   4551篇
  2014年   5629篇
  2013年   6225篇
  2012年   5901篇
  2011年   6284篇
  2010年   5325篇
  2009年   6583篇
  2008年   6459篇
  2007年   6803篇
  2006年   6487篇
  2005年   5670篇
  2004年   4967篇
  2003年   4463篇
  2002年   3804篇
  2001年   3318篇
  2000年   3059篇
  1999年   2795篇
  1998年   2533篇
  1997年   1946篇
  1996年   1680篇
  1995年   1578篇
  1994年   1351篇
  1993年   1183篇
  1992年   779篇
  1991年   671篇
  1990年   475篇
  1989年   409篇
  1988年   358篇
  1987年   192篇
  1986年   136篇
  1985年   139篇
  1984年   90篇
  1983年   45篇
  1982年   63篇
  1981年   43篇
  1980年   54篇
  1979年   35篇
  1978年   45篇
  1977年   47篇
  1976年   29篇
  1954年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
2.
区域中长期地震危险性数值分析研究,需要对其初始构造应力场有所了解,但目前以及未来一段时期内仍无法直接观测到深部孕震层区域的应力场状况.本文首先基于岩石库仑-摩尔破裂准则,利用青藏高原及邻区百年历史范围内的强震信息,来反演估算该区域的初始应力场.然后,考虑区域构造应力加载及强震造成的应力扰动共同作用,重现了历史强震的发展过程.然而对于初始应力场的反演估算,本文仅能给出区域其上下限的极限值,并不能唯一确定.因此,采用Monte Carlo随机法,进行大量独立的随机试验计算,生成数千种有差异的区域初始应力场模型,且保证每种模型都能令历史强震有序发生,但未来应力场演化过程不尽相同.最后,将数千种模型在未来时间段内的危险性预测结果集成为数理统计结果,据此给出了区域未来的地震危险性概率分布图.初步结果显示未来强震危险性概率较高地区集中在巴颜喀拉块体边界及鲜水河断裂带地区.  相似文献   
3.
波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.  相似文献   
4.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
5.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
6.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
7.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
8.
Base flows are important for tropical regions with pronounced dry seasons, which are facing increasing water demands. Base flow generation, however, is one of the most challenging hydrological processes to characterize in the tropics. In many years during the May–December wet season in the Panama Canal Watershed (PCW), base flows in rivers abruptly increase. This increase persists until the start of the December–April dry season. Understanding this unusual base flow jump (BFJ) behaviour is critical to improve water provisioning in the seasonal tropics, especially during droughts and extended dry seasons. This study developed an integrated approach combining piecewise regression on cumulative average base flow and sensitivity analysis to calculate the timing and magnitude of BFJ. Rainfall, forest cover, mean land surface slope, catchment area, and estimated subsurface storage were tested as predictors for the occurrence and magnitude of the BFJs in seven subcatchments of the PCW. Sensitivity analysis on correlated predictors allowed ranking of predictor contributions due to isolated and cross-correlation effects. Correlations between observed BFJs and BFJs predicted by watershed and rainfall-related predictors were 0.92 and 0.65 for BFJ timing and magnitude, respectively. Forest cover was the second most significant predictor after cumulative rainfall for jump magnitude, owing to larger subsurface storage and groundwater recharge in forests than pastures. Catchments in the mountainous eastern PCW always generated larger jumps due to their higher rainfall and greater forest cover than the western PCW catchments. The cross-correlations between predictors contributed to more than 50% of the jump variances. The results demonstrate the importance of rainfall gradient and catchment characteristics in affecting the sudden and sustained BFJs, which can help inform land management decisions intended to enhance water supplies in the tropics. This study underscores the need for more research to further understand the hydrological processes involved in the BFJ phenomenon, including better BFJ models and field characterizations, to help improve tropical ecosystem services under a changing environment.  相似文献   
9.
10.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号