首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59005篇
  免费   9345篇
  国内免费   11786篇
测绘学   11948篇
大气科学   10727篇
地球物理   9667篇
地质学   21177篇
海洋学   7045篇
天文学   7876篇
综合类   4779篇
自然地理   6917篇
  2024年   115篇
  2023年   636篇
  2022年   1701篇
  2021年   2046篇
  2020年   2380篇
  2019年   2367篇
  2018年   2006篇
  2017年   2615篇
  2016年   2487篇
  2015年   2874篇
  2014年   3422篇
  2013年   3969篇
  2012年   3826篇
  2011年   3941篇
  2010年   3303篇
  2009年   4012篇
  2008年   4033篇
  2007年   4558篇
  2006年   4286篇
  2005年   3799篇
  2004年   3326篇
  2003年   2739篇
  2002年   2437篇
  2001年   2008篇
  2000年   1907篇
  1999年   1695篇
  1998年   1429篇
  1997年   1065篇
  1996年   919篇
  1995年   802篇
  1994年   756篇
  1993年   640篇
  1992年   460篇
  1991年   335篇
  1990年   249篇
  1989年   257篇
  1988年   175篇
  1987年   121篇
  1986年   103篇
  1985年   75篇
  1984年   49篇
  1983年   23篇
  1982年   31篇
  1981年   16篇
  1980年   27篇
  1979年   14篇
  1978年   14篇
  1977年   31篇
  1973年   11篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
2.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
3.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
4.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
5.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
6.
7.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
8.
巡天观测与高能物理、黑洞天文等领域均有密切的联系.基于星系-超新星二分类问题,研究光谱数据预处理,结合余弦相似度改善PCA(Principal Component Analysis)光谱分解特征提取方法,用SDSS(the Sloan Digital Sky Survey)、WISeREP(the Weizmann Interactive Supernova data REPository)组成的5620条光谱数据集训练支持向量机,可以得到0.498%泛化误差的识别模型和新样本分类概率.使用Neyman-Pearson决策方法建立NPSVM(Neyman-Pearson Support Vector Machine)模型可进一步降低超新星的漏判率.  相似文献   
9.
毫秒脉冲星的自转频率非常稳定,提供了一种独立的基于遥远自然天体并能持续数百万乃至数十亿年的时间基准,具有稳定性强、运行时间长、服务范围广等特点.为了减弱毫秒脉冲星计时观测中各种高斯噪声对脉冲星时的影响,研究了一种基于双谱滤波的综合脉冲星时构建算法,处理分析了国际脉冲星计时阵(International Pul-sar Timing Array,IPTA)最新发布的4颗毫秒脉冲星(PSR J0437-4715、J0613-0200、J1713+0747和J1909-3744)的观测数据,分析了不同时间尺度综合脉冲星时的稳定性,并与构成国际原子时(International Atomic Time,TAI)的4家授时单位原子钟稳定性进行了比较.结果表明:双谱滤波算法能够较好地抑制观测噪声,提高综合脉冲星时的稳定性.相比于经典加权算法,综合脉冲星时1 yr、10 yr稳定度从7.77×10-14、8.56×10-16分别提高到1.50×10-14、3.50×10-16,单脉冲星时稳定性的提升也类似.同时发现,综合脉冲星时稳定性在5 yr及以上时间尺度上优于原子钟稳定性,可用于改善当前原子时的长期稳定性.  相似文献   
10.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号