首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3512篇
  免费   1148篇
  国内免费   1645篇
测绘学   132篇
大气科学   2808篇
地球物理   1247篇
地质学   1104篇
海洋学   308篇
天文学   8篇
综合类   184篇
自然地理   514篇
  2024年   8篇
  2023年   79篇
  2022年   119篇
  2021年   169篇
  2020年   186篇
  2019年   202篇
  2018年   196篇
  2017年   233篇
  2016年   181篇
  2015年   259篇
  2014年   306篇
  2013年   489篇
  2012年   300篇
  2011年   290篇
  2010年   228篇
  2009年   292篇
  2008年   273篇
  2007年   361篇
  2006年   348篇
  2005年   280篇
  2004年   214篇
  2003年   186篇
  2002年   167篇
  2001年   131篇
  2000年   119篇
  1999年   107篇
  1998年   101篇
  1997年   88篇
  1996年   68篇
  1995年   64篇
  1994年   75篇
  1993年   46篇
  1992年   30篇
  1991年   28篇
  1990年   14篇
  1989年   11篇
  1988年   20篇
  1987年   8篇
  1986年   3篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有6305条查询结果,搜索用时 17 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
5.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
6.
7.
以某高速铁路线上一座连续梁桥为例,运用模糊综合评判法,结合基于位移的支座损伤分析和截面曲率的桥墩损伤分析,以全概率理论地震损失模型为基础,提出了基于模糊理论的桥梁系统地震经济风险评估方法。结果表明:综合考虑桥梁系统的模糊地震经济风险分析方法能更全面地计算出连续梁桥在地震作用下的经济损失,仅以桥墩构件代表全桥所得地震经济损失误差较大。基于模糊理论的年预期损失风险框架方法通过结构抗震性能的概率特征可对高速铁路连续梁桥的地震直接经济风险进行全面评估,为该类桥梁的抗震设计、维修加固和灾后重建等方案做出合理评价。  相似文献   
8.
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd.  相似文献   
9.
本文以深圳公明水库6个中小型土石坝为试验区,利用10景1 m分辨率升降轨X波段TerraSAR影像和坝体附近连续气象站的降雨量数据,研究了坝体表面相干性的时序变化与雷达本地入射角及降雨的关系。试验结果表明,混凝土面板和草坡平均相干性均会随本地入射角增加而减小,同时,草坡表面平均相干性在有微小降雨的情况下就会快速下降0.1~0.2,差分干涉图的噪声增大;混凝土面板对微小的降雨敏感度小,但是在暴雨情况下将导致其表面完全失相干。上述结果表明,针对中小土石坝坡体变形监测应当顾及坝体的坡度及入射角选择合适的雷达成像参数,同时应充分利用降雨资料评估干涉图失相干情况,剔除噪声数据。  相似文献   
10.
Forest ecohydrological feedbacks complicate the threshold behaviour of stormflow response to precipitation or wetting conditions on a long-term scale (e.g. several years). In this study, the threshold behaviours in an evergreen-deciduous mixed forested headwater catchment in southern China were examined during 2009–2015, when damaged vegetation was recovering after the great 2008 Chinese ice and snowstorm. The non-uniqueness of the thresholds and the slow and rapid responses of stormflow at the outlet of the catchment in different hydro-climate datasets with different maximum values of gross precipitation (P) and sums of precipitation and antecedent soil moisture index (P + ASI) were assessed. The thresholds of P and P + ASI required to trigger stormflows (i.e. ‘generation thresholds’) and the transition from slow to rapid responses of stormflow (i.e. ‘rise thresholds’) were compared both seasonally and annually. The results indicated significant differences in the analysed datasets, highlighting the need to compare thresholds with care to avoid misinterpretation. Seasonal variations in threshold behaviours in the catchment suggested that vegetation canopy interception contributed to higher rise thresholds, and wetter conditions resulted in higher runoff sensitivity to precipitation during the growing and rainy seasons. Furthermore, the generation thresholds were higher in the dormant season, possibly due to drier soil moisture conditions in the near-channel areas. During the vegetation recovery period, the annual generation thresholds increased, however the rise thresholds did not exhibit a similar trend. The rapid stormflow response above the threshold decreased, possibly due to transpiration and interception of the recovered vegetation. However, the slow stormflow response to small rainfall events below the thresholds was higher in wetter years but lower in drier years, suggesting that the total water input dominated the stormflow response during small rainfall events. In conclusion, the seasonal and annual variations in threshold behaviours highlight that vegetation recovery and hydro-climatic conditions had a notable impact on the stormflow response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号