首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44162篇
  免费   8477篇
  国内免费   8562篇
测绘学   5830篇
大气科学   6561篇
地球物理   11213篇
地质学   19115篇
海洋学   5507篇
天文学   5399篇
综合类   3102篇
自然地理   4474篇
  2024年   74篇
  2023年   474篇
  2022年   1333篇
  2021年   1647篇
  2020年   1830篇
  2019年   1765篇
  2018年   1512篇
  2017年   1838篇
  2016年   1782篇
  2015年   2003篇
  2014年   2482篇
  2013年   2901篇
  2012年   2864篇
  2011年   3073篇
  2010年   2611篇
  2009年   3107篇
  2008年   3098篇
  2007年   3218篇
  2006年   3050篇
  2005年   2695篇
  2004年   2358篇
  2003年   2095篇
  2002年   1853篇
  2001年   1619篇
  2000年   1450篇
  1999年   1380篇
  1998年   1235篇
  1997年   996篇
  1996年   932篇
  1995年   868篇
  1994年   733篇
  1993年   604篇
  1992年   363篇
  1991年   307篇
  1990年   227篇
  1989年   171篇
  1988年   172篇
  1987年   101篇
  1986年   55篇
  1985年   63篇
  1984年   59篇
  1983年   22篇
  1982年   36篇
  1981年   21篇
  1980年   23篇
  1979年   23篇
  1978年   16篇
  1977年   30篇
  1976年   7篇
  1954年   15篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
区域中长期地震危险性数值分析研究,需要对其初始构造应力场有所了解,但目前以及未来一段时期内仍无法直接观测到深部孕震层区域的应力场状况.本文首先基于岩石库仑-摩尔破裂准则,利用青藏高原及邻区百年历史范围内的强震信息,来反演估算该区域的初始应力场.然后,考虑区域构造应力加载及强震造成的应力扰动共同作用,重现了历史强震的发展过程.然而对于初始应力场的反演估算,本文仅能给出区域其上下限的极限值,并不能唯一确定.因此,采用Monte Carlo随机法,进行大量独立的随机试验计算,生成数千种有差异的区域初始应力场模型,且保证每种模型都能令历史强震有序发生,但未来应力场演化过程不尽相同.最后,将数千种模型在未来时间段内的危险性预测结果集成为数理统计结果,据此给出了区域未来的地震危险性概率分布图.初步结果显示未来强震危险性概率较高地区集中在巴颜喀拉块体边界及鲜水河断裂带地区.  相似文献   
2.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
3.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
4.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   
5.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
6.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
7.
高强钢组合偏心支撑钢框架是一种新型的抗震结构体系,为分析其抗震性能,利用ABAQUS有限元软件建立了简化分析模型。在验证该简化模型合理有效的基础上,建立了某十层算例的整体模型,施加竖向荷载的同时施加水平倒三角形循环荷载作用,进而分析了该算例的滞回性能。研究表明:本文提出的简化分析模型不仅可以较准确的模拟该结构体系的延性和抗侧刚度,还可以有效预测结构的变形分布和非线性性能。  相似文献   
8.
利用完备经验模态分解方法(CEEMD)对我国沿海地区6个GNSS基准站(2010—2018)的高程时序数据进行了处理分析。结果表明:CEEMD在高程时间序列分析中具有一定的优越性,可准确分解出各GNSS站高程时序中存在的周、月、季节、年等变化周期项,其中周年运动是主要贡献项,各站高程时间序列的短周期变化与潮汐变化周期具有密切关联性;沿海GNSS站的地面沉降既具有区域的一致性,又存在区域间差异性,其中D区DBJO、DZJJ站呈现先下降后上升的趋势,N区NZUH、NWZU站呈下降趋势,B区的BZMW呈上升趋势,而同海区的BLHT站则呈显著的下降趋势。  相似文献   
9.
介绍了自主导航的轨道确定及时间同步观测方程。以北斗仿真全星座为对象,通过采用仿真星间及卫星与地面锚固站间观测值,进行了60 d自主导航解算,分别探讨了锚固站数量及锚固站观测连续性对北斗卫星导航系统(BDS)3类卫星自主导航精度的影响。结果表明:锚固站数量及观测连续性对RERR及CERR无影响;加入1个锚固站即可显著改进URE结果精度,继续增加锚固站数量虽然可进一步提高URE精度但其改进效果有限;锚固站观测中断时间越长,其对应自主导航精度越低。因此,在BDS自主导航运行模式下应保持较高的锚固站观测频次以保证自主导航精度;另外,锚固站数量及观测连续性对北斗系统3类卫星自主导航精度的影响无显著差异。  相似文献   
10.
面向数字孪生城市的智能化全息测绘   总被引:2,自引:0,他引:2  
以大数据、物联网、人工智能、虚拟现实、云计算、智能驾驶等新技术为代表的信息化浪潮席卷全球,数字世界与物理世界正形成两大平行发展、相互作用的体系,数字孪生技术应运而生。随着物联网技术(IOT)的发展,数字孪生的理念被引入到智慧城市建设中来,深刻影响着城市规划、建设与治理。笔者所在单位面向数字孪生城市和自然资源统一监管对测绘地理信息的新需求,在全国开创性地开展了面向数字孪生城市的智能化全息测绘试点工作。本文结合上海市智能化全息测绘试点工作,从数字孪生城市、数字孪生城市对地理信息的新需求、智能化全息测绘关键技术及测绘成果等方面展开了论述,重点介绍了智能化全息测绘的技术体系和产品体系,以及在社会各领域的应用成果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号