首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   12篇
  大气科学   12篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2017年   4篇
排序方式: 共有12条查询结果,搜索用时 42 毫秒
1.
基于TIGGE资料中的欧洲中期天气预报中心、英国气象局、美国国家环境预报中心、韩国气象厅和日本气象厅2015年1月1日-9月30日中国及周边地区地面2 m气温24~168 h集合预报资料,利用长短期记忆神经网络(Long Short-Term Memory,LSTM)、浅层神经网络(Neural Networks,NN)、滑动训练期消除偏差集合平均(BREM)和滑动训练期多模式超级集合(SUP)方法对2015年9月5-30日26 d预报期进行集成预报试验。结果表明,BREM对5个单模式进行等权集成,预报结果易受预报效果较差模式的影响,整体预报技巧略低于单个最优模式ECMWF的预报技巧。其中在新疆南部,等权集成后的预报技巧更低。SUP的预报结果比所有单个模式预报更为准确。在144 h之前,SUP的误差明显小于ECMWF的预报误差,但随预报时效增加,误差增长幅度增大。NN对地面气温的预报效果与SUP的预报效果相当。LSTM整体预报效果最好,特别是在预报时效较长(超过72 h)时,比其他方法预报准确率明显提高。LSTM神经网络方法明显改进了我国西北、华北、东北、西南和华南大部分地区的气温预报,但在南疆部分地区误差较大。  相似文献
2.
强对流天气临近预报、预警在气象灾害防御中具有极为重要的地位。在气象业务中,因对强对流天气临近预报、预警准确率和时、空分辨率的极高要求,使其成为业务难点和研究热点之一。对于高时、空分辨率强对流临近预报问题,尝试用深度学习方法来解决。首先将强对流临近预报抽象成同时包含时间和空间的序列预测问题;然后基于改进的循环神经网络算法形成的自编码模型,使用京津冀地区长序列、高时空分辨率天气雷达组网拼图数据进行模型训练;最后利用基于历史0.5 h雷达回波拼图数据训练得到的端到端神经网络,预报未来1 h内的逐6 min回波演变特征。通过基于传统外推算法的临近预报方法与深度学习算法的临近预报方法进行对比,发现使用的深度学习方法可以有效"学习"到高时、空分辨率序列雷达数据特征的内在关联,通过多层神经网络构造出抽象的深层特征,能够有效捕捉到雷达回波的演变规律和运动状态。通过计算雷达回波预报的命中率(POD)、虚警率(FAR)、临界成功指数(CSI)等检验表明,相较传统外推临近预报方法,在强对流回波临近预报准确率上有较明显提高。  相似文献
3.
使用传统单一模型预报气温经常出现漏报现象,最终导致预测结果不理想,精度较低。针对单一预报模型稳定性较低,随机性偏高,突发性较多的特点,在深度学习理论的基础上,提出一种采用门控循环单元(GRU)和灰色模型(GM)集成的方法,先分别训练两个模型,再通过权值ω将二者的预测结果进行加权组合,权值ω适当调整模型,改善模型的预报结果,提高模型的预报精度,并加快了运行速度,并且其普遍适用性和应急突发能力得到巨大改善。实验表明,将GRU神经网络加入灰色模型进行气温预报,效果要明显优于单一的模型,其标准差小了近一倍,从而表明实验方法的可行性和有效性。  相似文献
4.
提出一种基于深度学习的数值模式降水产品降尺度方法。利用深度学习的非线性映射能力和对栅格数据的信息提取能力,建立深度超分辨率模型提取不同分辨率数值模式降水产品间相对应的有效信息,从而将低分辨率数值模式降水产品利用提取的信息重构为高分辨率产品,继而通过构建多时次组合降尺度深度模型提取时间关联性进一步提升了重构准确性。基于欧洲中期天气预报中心不同尺度数值模式降水产品的实验表明所提方法能够比常用的双三次插值方法更有效地将低分辨率降水产品转换为对应的高分辨率产品。  相似文献
5.
模式预报的订正是决定局地天气预报结果的一个重要步骤,基于机器学习的后处理模型近年来开始崭露头角。本文发展了基于岭回归(Ridge)、随机森林(Random Forest,RF)和深度学习(Deep Learning,DL)的3种后处理模型,基于中国气象局(CMA)的BABJ模式、欧洲中期天气预报中心(ECMWF)的ECMF模式、日本气象厅(JMA)的RJTD模式和NCEP的KWBC模式这4个数值天气预报模式2014年2月至2016年9月(训练期)近地面2 m气温预报和实况资料确定各模型参数,进而对2016年10月至2017年9月(预报期)华北地区(38°N~43°N,113°E~119°E)的逐日地面2m气温预报进行了多模式集合预报分析。采用均方根误差对预报效果进行评估,这3种后处理模型的预报效果和4个数值天气预报模式以及通常的多模式集合平均(Ensemble Mean,EMN)的预报效果的对比表明:1)随着预报时长增加,4个数值预报模式及各种后处理模型的均方根误差均呈上升趋势;但区域平均而言,Ridge、RF和DL的预报效果在任何预报时长上都明显优于EMN和单个天气预报模式;特别是前几天的短期预报DL的预报效果更好,中后期预报Ridge的预报效果略好。2)华北地区的东南部均方根误差较小,其余格点上均方根误差较高,从空间分布而言,DL的订正预报效果最好,3种机器学习模型的误差在1.24~1.26°C之间,而EMN的误差达1.69°C。3)夏季各种方法的预报效果都较好,冬季预报效果都较差;但是Ridge、RF和DL的预报效果明显优于EMN,这3种模型预报的平均均方根误差在2.15~2.18°C之间,而EMN的平均均方根误差达2.45°C。  相似文献
6.
强对流短时预报(2—6 h)具有较大难度。一方面,基于观测数据的外推已基本不可用;另一方面,高分辨率数值模式(High-resolution Numerical Weather Prediction,HNWP)的预报性能有待提升。利用深度学习方法,将卫星、雷达、云-地闪电(简称闪电)等观测数据和高分辨率数值模式预测数据进行融合,得到更有效的闪电落区短时预报结果。基于多源观测数据和高分辨率数值天气预报数据的特性,构建了一个双输入单输出的深度学习语义分割模型(LightningNet-NWP),使用了包括闪电密度、雷达组合反射率拼图、卫星成像仪6个红外通道,以及GRAPES_3km模式预报的雷达组合反射率等共9个预报因子。深度学习模型使用了编码-解码的经典全卷卷积结构,并使用池化索引共享的方式,尽可能保留不同尺度特征图上的细节特征信息;利用三维卷积层提取观测数据时间和空间上的变化特征。结果表明,LightningNet-NWP能够较好地实现0—6 h的闪电落区预报,具备比单纯使用多源观测数据、高分辨率数值模式预报数据更好的预报结果。深度学习能够有效实现多源观测数据和数值天气预报数据的融合,在2—6 h时效预报效果优于单独使用观测数据或数值天气预报数据;预报时效越长,融合的优势体现得越明显。  相似文献
7.
针对气象预测内容繁多且影响因素多样的问题,提出了一种基于长短时记忆(LSTM)的气象预测方法。方法能够对繁杂的气象数据进行自动预处理,提取相应的特征信息。通过神经网络的前向训练、长短时记忆反馈学习,经过多隐藏层地自主训练,对能见度、温度、露点、风速、风向以及压力气象信息实现准确预测。通过实验以及与经典机器学习预测方法的比较,验证了本文方法在气象预测中的有效性,进一步提升了气象预测的准确性,各项预测值的均方检验误差平均值为0.35。  相似文献
8.
临近强降水预报目的是预测未来两小时内局地降水强度的分布,准确的外推雷达图像可以为临近强降水预报提供准确的时空参考数据。近两年循环神经网络模型应用于天气雷达回波图象外推得到了较好的结果。本文基于分析现有ConvLSTM和TrajGRU模型的基础上,从输入雷达数据层数和修改模型损失函数两个方面对循环神经网络外推模型进行改进,并对业务上的雷达图象序列和竞赛雷达图象序列进行试验。试验结果表明,改进的外推模型能更好地捕捉时空相关性,具有更精确的外推效果。  相似文献
9.
近年来,以深度学习为核心的人工智能技术,取得了一系列重大突破.本文将就人工智能的产业化热潮,主要研究流派及发展历史,以深度学习为核心的成功应用,以及存在的一些问题和今后的可能研究方向做一个介绍.  相似文献
10.
近年来,细粒度图像识别逐渐成为计算机视觉领域的研究热点.由于不同类别图像间的视觉差异小、语义鸿沟问题严重,传统的基于视觉特征的细粒度图像识别性能往往不尽人意.针对这些挑战,目前许多学者都在研究基于用户点击数据的图像识别.本文围绕点击数据在图像识别中数据预处理、特征提取和模型构建3大模块中的应用,总结了已有的基于点击数据的识别算法及最新的研究进展.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号