首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24361篇
  免费   5287篇
  国内免费   7152篇
测绘学   1431篇
大气科学   8502篇
地球物理   4057篇
地质学   10423篇
海洋学   2984篇
天文学   5361篇
综合类   1348篇
自然地理   2694篇
  2024年   64篇
  2023年   351篇
  2022年   803篇
  2021年   967篇
  2020年   1009篇
  2019年   1161篇
  2018年   1026篇
  2017年   1041篇
  2016年   1084篇
  2015年   1232篇
  2014年   1723篇
  2013年   2007篇
  2012年   1880篇
  2011年   1860篇
  2010年   1709篇
  2009年   2141篇
  2008年   1958篇
  2007年   2104篇
  2006年   1885篇
  2005年   1690篇
  2004年   1431篇
  2003年   1226篇
  2002年   971篇
  2001年   898篇
  2000年   788篇
  1999年   726篇
  1998年   604篇
  1997年   414篇
  1996年   353篇
  1995年   319篇
  1994年   294篇
  1993年   279篇
  1992年   153篇
  1991年   130篇
  1990年   96篇
  1989年   73篇
  1988年   89篇
  1987年   35篇
  1986年   37篇
  1985年   40篇
  1984年   32篇
  1983年   22篇
  1982年   23篇
  1981年   14篇
  1980年   17篇
  1979年   4篇
  1978年   10篇
  1977年   17篇
  1954年   3篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
5.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
6.
7.
Himawari-8静止气象卫星具有高空间分辨率、高观测频次和高时效特点,对于火点检测具有很强优势。对Himawari-8卫星的3.9μm和11.2μm两通道亮温进行了连续时相变化研究,得出两通道的亮温在时间上的变化差值稳定且规律明显。根据两通道的亮温时相特征,考虑白天可见光对3.9μm通道的影响,并结合火点产生时引起的亮温变化特征,提出了适用于晴空条件下改进的火点检测算法。在多处进行了此算法的实验,例如2018-11-27 T 16:40(UTC时)河北张家口市桥东区一化工厂附近发生的严重爆炸起火事件以及2019-02-28澳大利亚西南部发生的火灾事件,均快速有效的检测到了火点。实验表明,改进的火点检测算法能很好的进行火点检测,并能解决晨昏交界、冰雪下垫面、常规火源点、太阳耀光等火点检测的难题。  相似文献   
8.
以标准化降水蒸散指数(SPEI)作为评估指标,基于渭河流域28个气象站点1961—2017年实测降水量和气温数据,采用Mann-Kendall(M-K)趋势检验、经验正交函数以及小波变换等方法分析渭河流域干旱时空变化特征,并研究渭河流域干旱与6种大尺度气候因子之间的相关关系,进一步探讨主要气候因子对流域干旱时空分布特征的潜在影响。研究表明:渭河流域在1961—2017年间整体呈现出变旱的趋势。通过经验正交函数分解,渭河流域干旱分布场主要有3种典型模态类型,分别为全局型、西北—东南反向分布型以及东—西反向分布型;同时,大尺度气候因子南方涛动指数SOI与流域干旱分布场具有更好的相关关系,对该区域内干旱变化有较强的影响。  相似文献   
9.
作为重要的土壤物理性质,膨胀性在影响土壤导水性、持水性、抗蚀性以及土壤结构的形成和发育等方面发挥着重要作用。为了探讨生物土壤结皮(BSCs)土壤的膨胀特性及其主要影响因素,针对黄土高原风沙土和黄绵土两种典型土壤,利用膨胀仪测定并比较了有、无藓结皮及其在不同因素(初始含水量、干湿循环、冻融循环、温度)下膨胀率的差异,分析了BSCs对土壤膨胀性的影响及其与环境因素和BSCs性质的关系。结果显示:风沙土上藓结皮的膨胀率为1.93%,较无结皮增加了8.65倍;而黄绵土上藓结皮的膨胀率为2.05%,与无结皮相比降低了76.68%。藓结皮的生物量和厚度与其膨胀率在风沙土上均呈线性正相关关系(P < 0.05),在黄绵土上分别呈二次函数(P=0.02)和线性正相关关系(P=0.02)。初始含水量同时影响了土壤最大膨胀率和稳定膨胀时间,影响程度风沙土远大于黄绵土(包括藓结皮和无结皮);干湿循环次数对无结皮土壤膨胀率的影响程度大于藓结皮土壤,其中风沙土和黄绵土上无结皮的膨胀率分别是50.00%~620.00%和-2.28%~10.81%,而两种土壤上藓结皮的膨胀率分别是-5.70%~10.88%和-10.24%~-21.46%;冻融循环下4种土壤的膨胀率均有不同程度的降低,降幅为0~18.54%。黄绵土无结皮的膨胀率受温度影响程度较大,50℃下黄绵土无结皮的膨胀率分别是25℃和35℃下的1.17倍和1.21倍。BSCs显著地改变了风沙土和黄绵土表层的膨胀性,其影响的程度和方向取决于土壤类型。同时,BSCs的膨胀性受含水量、温度、干湿以及冻融循环等关键因素影响。  相似文献   
10.
沉积物硼(B)同位素组成可以反映其地质成因及经历的地质过程,因此在许多领域的研究中都有较为广泛的应用。通过对位于柴达木盆地碱山背斜顶部的SG-1b钻孔沉积物(7.3~1.6 Ma)水溶组分的B同位素研究,发现钻孔沉积物B含量在38.55~172.3μg/g之间,平均含量为87.6μg/g;δ~(11)B值的变化范围在3.61‰~16.26‰之间,平均值为10.65‰,B含量与δ~(11)B值具有一定的正相关关系。进一步分析表明,受到碱山背斜构造隆升以及晚新生代以来气候干旱化的影响,柴西古湖逐渐咸化萎缩,沉积环境以及碳酸盐含量、粘土矿物含量及其矿物组合等也在发生变化,B含量和δ~(11)B值自钻孔底部向上的逐步增加以及后期的急剧增加,与水溶离子含量以及矿物和粒度等的变化一致,这说明柴达木盆地晚中新世以来湖泊沉积物的B含量和δ~(11)B值可以很好地反映研究区气候和湖水的演化过程,共同指示了研究区自7.3 Ma以来气候的持续干旱化和湖水盐度的逐步增加,以及3.3Ma以来干旱化和湖水浓缩过程的加剧。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号