首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2241篇
  免费   722篇
  国内免费   494篇
测绘学   101篇
大气科学   1049篇
地球物理   707篇
地质学   881篇
海洋学   152篇
天文学   5篇
综合类   106篇
自然地理   456篇
  2024年   6篇
  2023年   30篇
  2022年   57篇
  2021年   102篇
  2020年   137篇
  2019年   114篇
  2018年   88篇
  2017年   101篇
  2016年   120篇
  2015年   113篇
  2014年   136篇
  2013年   248篇
  2012年   143篇
  2011年   130篇
  2010年   111篇
  2009年   128篇
  2008年   129篇
  2007年   177篇
  2006年   160篇
  2005年   147篇
  2004年   151篇
  2003年   159篇
  2002年   113篇
  2001年   107篇
  2000年   91篇
  1999年   84篇
  1998年   76篇
  1997年   66篇
  1996年   60篇
  1995年   35篇
  1994年   35篇
  1993年   32篇
  1992年   21篇
  1991年   9篇
  1990年   21篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有3457条查询结果,搜索用时 15 毫秒
1.
黄河干流内蒙古段河道冬季流凌封河期, 河道水量除一部分转化为冰量外, 很大一部分转化为槽蓄水量而贮存在河道中, 导致下游头道拐河段出现小流量过程, 上游河道流量转化为槽蓄水量和贮存的冰量越大, 小流量持续时间越长, 开河期发生凌汛洪水风险越高。通过对1998 - 2016年头道拐站凌讯期流量变化过程分析, 重新界定了小流量上限阈值为330 m3·s-1, 并且以此值为标准进行小流量过程研究, 分别采用R/S极差分析法、 Fourier变换分析法对近年来小流量过程变化特征进行分析; 结合非线性概率Logit模型和Probit模型对小流量过程的影响因素进行讨论。结果表明: 小流量持续天数变化呈现缩短趋势; 同时, 小流量过程与上游相对来水之间变化关系显著且过程同步, 而滞后于河道槽蓄水量变化过程; 通过Logit模型和Probit模型分析各影响因素变化时相应小流量持续时间变化的响应概率大小, 明确河道冰流量是小流量过程第一影响因素, 气温条件是小流量过程的决定因素, 首封位置和相对来水量是小流量过程重要影响因素。  相似文献   
2.
洪水影响预报和风险预警理念与业务实践   总被引:2,自引:0,他引:2       下载免费PDF全文
刘志雨 《水文》2020,40(1):1-6
我国是世界上洪涝灾害频繁而严重的国家之一,洪水预报预警是防汛减灾工作中重要的非工程措施和洪水防御工作的耳目和参谋。从水文行业的视角,回顾了近年来我国洪水预报预警技术与业务进展,分析了当前洪水预报预警工作面临的新形势和新要求,对比国内外同类行业发展查找了存在的差距,阐述了洪水影响预报和风险预警的定义和理念,从顶层对基于影响预报和风险预警的新一代洪水预报预警系统("国家洪水预报预警系统")总体框架进行了研究和设计,一些关键技术成果在大范围洪水早期预警业务实践中得到了探索应用,取得了较好的效果。  相似文献   
3.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   
4.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   
5.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
6.
Yabello牧场是埃塞俄比亚博拉纳的一个半干旱地区的牧场,目前面临着草场退化的严重挑战。植被覆盖的变化、过度放牧和季节性变化极大地影响了Yabello牧场的牧草组成和生物量。本文评估了植被覆盖、放牧和季节对Yabello牧场的牧草组成和生物量的影响。首先采用1 m×1 m的随机样方进行实验,根据植被覆盖类型和放牧变化选择样点,并对季节影响进行评估。使用SAS统计软件和MicrosoftExcel分析牧草组成、牧草高度和质量数据。本研究总共记录了26种草种,其中Chloris roxburghiana, Chrysopogon aucheri和Chrysopogon aucheri草种均表现出最高的平均单种覆盖高度和生物量产量。因此,建议将这些草种用于研究区域退化草地的恢复。研究结果还表明,植被覆盖类型、放牧和季节变化是决定牧草种类组成、牧草高度和生物量产量的关键因素。最后,研究结论还认为控制灌木丛植被并平衡放牧水平的可持续管理对于该地区的可持续牧草生产和生物多样性保护至关重要。  相似文献   
7.
阿尔金山东端北部区域生态环境修复模式研究   总被引:1,自引:0,他引:1  
阿尔金山荒漠化防治生态功能区是甘肃西部、新疆乃至整个西北地区重要生态屏障,对阿尔金山东端北部区域为代表的西土沟流域生态环境现状和存在主要问题进行分析,提出区域生态环境治理构想和因势治洪-以洪治沙-自然净化-综合利用的区域洪水资源开发利用模式和以“水害”治“沙害”、变害为利的区域生态环境、沙漠治理模式。国内外学者对本区域荒漠化防治、草地生态安全评价有部分研究,但对沙漠区洪水资源开发利用问题研究比较罕见,在沙漠地区洪水资源化利用方面具有很强的代表性,为阿尔金山保护区的规范管理和可持续对策制定提供科学依据,对同类地区生态环境修复提供示范。  相似文献   
8.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   
9.
Better understanding of which processes generate floods in a catchment can improve flood frequency analysis and potentially climate change impacts assessment. However, current flood classification methods are either not transferable across locations or do not provide event-based information. We therefore developed a location-independent, event-based flood classification methodology that is applicable in different climates and returns a classification of all flood events, including extreme ones. We use precipitation time series and very simply modelled soil moisture and snowmelt as inputs for a decision tree. A total of 113,635 events in 4155 catchments worldwide were classified into one of five hydro-climatological flood generating processes: short rain, long rain, excess rainfall, snowmelt and a combination of rain and snow. The new classification was tested for its robustness and evaluated with available information; these two tests are often lacking in current flood classification approaches. According to the evaluation, the classification is mostly successful and indicates excess rainfall as the most common dominant process. However, the dominant process is not very informative in most catchments, as there is a high at-site variability in flood generating processes. This is particularly relevant for the estimation of extreme floods which diverge from their usual flood generation pattern, especially in the United Kingdom, Northern France, Southeastern United States, and India.  相似文献   
10.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号