首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2520篇
  免费   219篇
  国内免费   253篇
测绘学   261篇
大气科学   302篇
地球物理   791篇
地质学   666篇
海洋学   333篇
天文学   90篇
综合类   67篇
自然地理   482篇
  2024年   7篇
  2023年   12篇
  2022年   31篇
  2021年   55篇
  2020年   80篇
  2019年   60篇
  2018年   56篇
  2017年   86篇
  2016年   87篇
  2015年   86篇
  2014年   115篇
  2013年   236篇
  2012年   83篇
  2011年   99篇
  2010年   59篇
  2009年   122篇
  2008年   155篇
  2007年   180篇
  2006年   133篇
  2005年   156篇
  2004年   110篇
  2003年   118篇
  2002年   111篇
  2001年   82篇
  2000年   88篇
  1999年   72篇
  1998年   57篇
  1997年   69篇
  1996年   39篇
  1995年   43篇
  1994年   33篇
  1993年   46篇
  1992年   34篇
  1991年   25篇
  1990年   20篇
  1989年   24篇
  1988年   27篇
  1987年   17篇
  1986年   17篇
  1985年   19篇
  1984年   9篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1971年   1篇
  1954年   1篇
排序方式: 共有2992条查询结果,搜索用时 19 毫秒
1.
Hydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.  相似文献   
2.
地震定位对速度模型的依赖性很强.四川地区地形复杂,常规工作中可选取多种速度模型进行定位.川西龙门山断裂带为东南部四川盆地和西北部青藏高原东部山区的明显分界线,近年在此断裂带上发生多次较大地震.对发生在该断裂带附近的6个爆破事件和15个天然地震重新定位,并对比结果.研究表明,相同台站包围情况下,川滇3D速度模型稳定性最好,但对浅表爆破不太准确.相比HypoSat(一维速度模型)组合,台站分布对Hypo2000(一维速度模型)和Hypo2000(赵珠速度模型)组合的定位结果影响较大.  相似文献   
3.
Evapotranspiration (ET) is an important parameter in hydrologic processes and modelling. In agricultural watersheds with competing uses of fresh water including irrigated agriculture, estimating crop evapotranspiration (ETc) accurately is critical for improving irrigation system and basin water management. The use of remote sensing-based basal crop coefficients is becoming a common method for estimating crop evapotranspiration for multiple crops over large areas. The Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI), based on reflectance in the red and near-infrared bands, are commonly used for this purpose. In this paper, we examine the effects of row crop orientation and soil background darkening due to shading and soil surface wetness on these two vegetation indices through modelling, coupled with a field experiment where canopy reflectance of a cotton crop at different solar zenith angles, was measured with a portable radiometer. The results show that the NDVI is significantly more affected than the SAVI by background shading and soil surface wetness, especially in north–south oriented rows at higher latitudes and could lead to a potential overestimation of crop evapotranspiration and irrigation water demand if used for basal crop coefficient estimation. Relationships between the analysed vegetation indices and canopy biophysical parameters such as crop height, fraction of cover and leaf area index also were developed for both indices.  相似文献   
4.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   
5.
Soil erosion in the Anthropocene: Research needs   总被引:6,自引:0,他引:6       下载免费PDF全文
Soil erosion is a geomorphological and, at the same time, a land degradation process that may cause environmental and property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers soil quality on‐site, but causes also significant sediment‐related problems off‐site. Given the large number of research papers on this topic, one might therefore conclude that we know now almost everything about soil erosion and its control so that little new knowledge can be added. This conclusion can be refuted by pointing to some major research gaps. There is a need for more research attention to (1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, (2) scaling up soil erosion processes and rates in space and time, and (3) innovative techniques and strategies to prevent soil erosion or reduce erosion rates. This is illustrated with various case studies from around the world. If future research addresses these research gaps, we will (1) better understand processes and their interactions operating at a range of spatial and temporal scales, predict their rates as well as their on‐site and off‐site impacts, which is academically spoken rewarding but also crucial for better targeting erosion control measures, and (2) we will be in a better position to select the most appropriate and effective soil erosion control techniques and strategies which are highly necessary for a sustainable use of soils in the Anthropocene. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
Streamflow modelling results from the GR4H and PDM hydrological models were evaluated in two Australian sub-catchments, using (1) calibration to streamflow and (2) joint-calibration to streamflow and soil moisture. Soil moisture storage in the models was evaluated against soil moisture observations from field measurements. The PDM had the best performance in terms of both streamflow and soil moisture estimations during the calibration period, but was outperformed by GR4H during validation. It was also shown that the soil moisture estimation was improved significantly by joint-calibration for the case where streamflow and soil moisture estimations were poor. In other cases, addition of the soil moisture constraint did not degrade the results. Consequently, it is recommended that GR4H be used, in preference to the PDM, in the foothills of the Murrumbidgee catchment or other Australian catchments with semi-arid to sub-humid climate, and that soil moisture data be used in the calibration process.  相似文献   
7.
It is important to find a reliable method to estimate maximum sustainable yield(MSY) or total allowable catch(TAC) for fishery management, especially when the data availability is limited which is a case in China. A recently developed method(CMSY) is a data-poor method, which requires only catch data, resilience and exploitation history at the first and final years of the catch data. CMSY was used in this study to estimate the biological reference points for Largehead hairtail(Trichiurus lepturus, Temminck and Schlegel) in the Yellow Sea and Bohai Sea, based on the fishery data from China Fishery Statistical Year Books during 1986 to 2012. Additionally,Bayesian state-space Schaefer surplus production model(BSM) and the classical surplus production models(Schaefer and Fox) performed by software CEDA and ASPIC, were also projected in this study to compare with the performance of CMSY. The estimated MSYs from all models are about 19.7×104–27.0×104 t, while CMSY and BSM yielded more reasonable population parameter estimates(the intrinsic population growth rate and the carrying capacity). The biological reference points of B/BMSY smaller than 1.0, while F/FMSY higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Largehead hairtail fishery.  相似文献   
8.
This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models.  相似文献   
9.
10.
Image network geometry, including the number and orientation of images, impacts the error, coverage, and processing time of 3D terrain mapping performed using structure-from-motion and multiview-stereo (SfM-MVS). Few studies have quantified trade-offs in error and processing time or ways to optimize image acquisition in diverse topographic conditions. Here, we determine suitable camera locations for image acquisition by minimizing the occlusion produced by topography. Viewshed analysis is used to select the suitable images, which requires a preliminary digital elevation model (DEM), potential camera locations, and sensor parameters. One aerial and two ground-based image collections were used to analyse differences between SfM-MVS models produced using: (1) all available images (ALL); (2) images selected using conventional methods (CON); and (3) images selected using the viewshed analysis (VIEW). The resulting models were compared with benchmark point clouds acquired by a terrestrial laser scanner (TLS) and TLS-derived DEMs. The VIEW datasets produced denser point clouds (28–32% more points) and DEMs with up to 66% reduction in error compared with CON datasets due to reduction of gaps in the DEM. VIEW datasets reduced processing time by 37–76% compared with ALL, with no reduction in coverage or increase in error. DEMs produced with ALL and VIEW datasets had similar slope and roughness, while slight differences that may be locally important were observed for the CON dataset. The new method helps optimize SfM-MVS image collection strategies that significantly reduce the number of images required with minimal loss in coverage or accuracy over complex surfaces. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号