首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46220篇
  免费   8713篇
  国内免费   11737篇
测绘学   5806篇
大气科学   11557篇
地球物理   7983篇
地质学   19381篇
海洋学   6287篇
天文学   6481篇
综合类   3404篇
自然地理   5771篇
  2024年   98篇
  2023年   560篇
  2022年   1381篇
  2021年   1673篇
  2020年   1920篇
  2019年   2030篇
  2018年   1735篇
  2017年   1981篇
  2016年   1964篇
  2015年   2340篇
  2014年   2878篇
  2013年   3228篇
  2012年   3160篇
  2011年   3338篇
  2010年   2871篇
  2009年   3429篇
  2008年   3402篇
  2007年   3806篇
  2006年   3591篇
  2005年   3102篇
  2004年   2683篇
  2003年   2320篇
  2002年   2039篇
  2001年   1634篇
  2000年   1618篇
  1999年   1450篇
  1998年   1242篇
  1997年   923篇
  1996年   790篇
  1995年   671篇
  1994年   633篇
  1993年   545篇
  1992年   386篇
  1991年   291篇
  1990年   202篇
  1989年   198篇
  1988年   139篇
  1987年   90篇
  1986年   83篇
  1985年   58篇
  1984年   40篇
  1983年   23篇
  1982年   22篇
  1981年   15篇
  1980年   19篇
  1979年   10篇
  1978年   13篇
  1977年   18篇
  1973年   4篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
5.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
6.
在太阳大气不同层次连续光谱中叠加有丰富的发射线或吸收线,对这些谱线轮廓进行反演分析可以探测太阳大气的化学成分和物理状态.太阳大气的色球及过渡区由于其密度低难以建立热动平衡,建立相应的大气模型需要采用非局部热动平衡(Non-Local Thermodynamic Equilibrium,N-LTE)理论.根据相对偏离因子计算来研究太阳中低层大气偏离局部热动平衡(Local Thermodynamic Equilibrium,LTE)分布的情况.首先对日全食观测过程中得到色球和过渡区不同高度形成的两条光谱数据进行反演,得到确定观测谱线的参数信息,如连续谱源函数、谱线源函数、多普勒宽度和由此推出的等效动力学温度;根据这些反演出的谱线参量计算出二维视场内每个空间采样点偏离LTE状态的定量结果;其次,根据用于观测的积分视场单元光纤排布阵列重构出辐射强度、等效动力学温度和相对偏离因子二维分布.结果显示:在局部小区域,温度分布和相对偏离因子的分布存在较强相关性,而与辐射强度分布无明显相关.从两条谱线导出的等效温度和相对偏离因子分布存在明显的差异.这两种二维分布揭示出太阳大气某些小尺度区域具有较强的结构性和复杂性,为进一步理解太阳中低层大气物理提供了一种新的视角.  相似文献   
7.
Abstract

Large debris flows in steep-sloped ravines debouching to the Rimac River, in metropolitan Lima (Peruvian capital), have resulted in considerable loss of life and property adversely impacting communities in the region. Temporal, spatial and volumetric features of debris flows are difficult to predict, and it is of utmost importance that achievable management solutions are found to reduce the impact of these catastrophic events. The emotional and economic toll of these debris flows on this increasingly densely populated capital city in South America is devastating where communities must live in such inadequate and dangerous conditions. To address this problem, the application of advanced Japanese technology, Sustainable Actions Basin Orientation (SABO), has been investigated using a geomorphological modelling to develop an implementation plan. Rayos de Sol stream basin in Chosica, was selected as a pilot to develop the proposal, as it is considered high risk due to the presence of ancient debris flows and recent flows in 2012, 2015 and 2017. The recurrence of debris flows in this location has resulted in numerous deaths and catastrophic property losses. This study combines geologic and geomorphic mapping and hydraulic and landform evolution numerical modelling. The implementation of a SABO Master Plan based on the multidisciplinary assessment hazard scenarios, will allow the implementation of feasible mitigation actions. The SABO technology has been applied successfully in Japan and other countries in areas with steep short slopes, similar to the conditions surrounding the Peruvian capital. Results from this study will be presented to the Peruvian Government as part of an action plan to manage debris-flow impact.
  1. KEY POINTS
  2. High-risk mass slope failure is linked to poor urban planning in urban developing regions of Lima the capital of Peru.

  3. A multidisciplinary study including geotechnical and hydrological analysis, engineering design, and socio-economic research is required to implement a SABO Master Plan, and this basin is pilot study basin.

  4. At the present time, a maintenance programme for existing hydraulic structures should be implemented, and a flood risk management plan developed may propose the relocation of some communities and infrastructure.

  相似文献   
8.
基于Sentinel-1 SAR升、降影像,利用D-InSAR技术获取新疆伽师M S6.4地震的同震形变场,结果表明,本次地震引起的同震形变场整体呈近椭圆状分布,形变区东西长约66 km,南北宽约40 km,整个形变场由南部隆升区和北部沉降区组成,南部最大隆升量约7 cm,北部最大沉降量约3 cm。本次地震发生在块体俯冲界面处的低倾角逆冲推覆构造带上,隆升和沉降两个中心均位于逆冲推覆体的上盘,形变主要以隆升形变为主,符合低倾角逆断层中强震的变形特征。在沉降区与隆升区之间干涉条纹连续分布,未出现表征地表破裂位置的空间失相关带,表明地震未引起明显的地表破裂。结合震源机制、余震精定位及区域构造特征,初步推断认为伽师地震的发震构造可能为柯坪塔格推覆构造前缘的N倾的柯坪断裂。  相似文献   
9.
以双座串联大跨度斜拉桥-珠海洪鹤大桥为背景,根据桥梁自振特性及场地效应,生成了三组人工波,采用纵向+2/3竖向的地震作用组合输入方式,通过非线性时程分析,系统的研究了粘滞阻尼器对双座串联大跨度斜拉桥减震性能的影响。同时为了确定粘滞阻尼器的最优参数,对粘滞阻尼器的阻尼系数C和速度指数α进行了参数敏感性分析。结果表明:设置纵向粘滞阻尼器能够显著减小双座串联斜拉桥的纵向位移响应,减小主梁在串联处发生碰撞的概率,同时改善主塔塔底结构受力情况,具有良好的耗能减震效果。综合考虑安全性、适用性和经济性等方面,最后给出针对洪鹤大桥的最优粘滞阻尼器参数:速度指数α为0.3,阻尼系数C为3 000kN/(m/s)0.3。  相似文献   
10.
介绍地震应急指挥中心中控系统的建设情况,阐述了可视化智能中控系统的功能需求、逻辑结构和应用框架结构,分析了可视化智能中控系统的功能特点,并对中控系统的技术发展和应用进行展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号