首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24389篇
  免费   5283篇
  国内免费   6619篇
测绘学   1150篇
大气科学   6489篇
地球物理   4251篇
地质学   11670篇
海洋学   1977篇
天文学   5175篇
综合类   1845篇
自然地理   3734篇
  2024年   65篇
  2023年   335篇
  2022年   773篇
  2021年   954篇
  2020年   954篇
  2019年   1115篇
  2018年   963篇
  2017年   1056篇
  2016年   1065篇
  2015年   1205篇
  2014年   1577篇
  2013年   1841篇
  2012年   1703篇
  2011年   1781篇
  2010年   1742篇
  2009年   2128篇
  2008年   1985篇
  2007年   2049篇
  2006年   1997篇
  2005年   1665篇
  2004年   1395篇
  2003年   1230篇
  2002年   1034篇
  2001年   1003篇
  2000年   810篇
  1999年   735篇
  1998年   585篇
  1997年   422篇
  1996年   359篇
  1995年   320篇
  1994年   265篇
  1993年   266篇
  1992年   189篇
  1991年   157篇
  1990年   121篇
  1989年   86篇
  1988年   91篇
  1987年   34篇
  1986年   32篇
  1985年   39篇
  1984年   28篇
  1983年   19篇
  1982年   19篇
  1981年   11篇
  1980年   18篇
  1979年   11篇
  1978年   17篇
  1977年   27篇
  1976年   3篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Base flows are important for tropical regions with pronounced dry seasons, which are facing increasing water demands. Base flow generation, however, is one of the most challenging hydrological processes to characterize in the tropics. In many years during the May–December wet season in the Panama Canal Watershed (PCW), base flows in rivers abruptly increase. This increase persists until the start of the December–April dry season. Understanding this unusual base flow jump (BFJ) behaviour is critical to improve water provisioning in the seasonal tropics, especially during droughts and extended dry seasons. This study developed an integrated approach combining piecewise regression on cumulative average base flow and sensitivity analysis to calculate the timing and magnitude of BFJ. Rainfall, forest cover, mean land surface slope, catchment area, and estimated subsurface storage were tested as predictors for the occurrence and magnitude of the BFJs in seven subcatchments of the PCW. Sensitivity analysis on correlated predictors allowed ranking of predictor contributions due to isolated and cross-correlation effects. Correlations between observed BFJs and BFJs predicted by watershed and rainfall-related predictors were 0.92 and 0.65 for BFJ timing and magnitude, respectively. Forest cover was the second most significant predictor after cumulative rainfall for jump magnitude, owing to larger subsurface storage and groundwater recharge in forests than pastures. Catchments in the mountainous eastern PCW always generated larger jumps due to their higher rainfall and greater forest cover than the western PCW catchments. The cross-correlations between predictors contributed to more than 50% of the jump variances. The results demonstrate the importance of rainfall gradient and catchment characteristics in affecting the sudden and sustained BFJs, which can help inform land management decisions intended to enhance water supplies in the tropics. This study underscores the need for more research to further understand the hydrological processes involved in the BFJ phenomenon, including better BFJ models and field characterizations, to help improve tropical ecosystem services under a changing environment.  相似文献   
5.
6.
Up-to-date forest inventory information relating the characteristics of managed and natural forests is fundamental to sustainable forest management and required to inform conservation of biodiversity and assess climate change impacts and mitigation opportunities. Strategic forest inventories are difficult to compile over large areas and are often quickly outdated or spatially incomplete as a function of their long production cycle. As a consequence, automated approaches supported by remotely sensed data are increasingly sought to provide exhaustive spatial coverage for a set of core attributes in a timely fashion. The objective of this study was to demonstrate the integration of current remotely-sensed data products and pre-existing jurisdictional inventory data to map four forest attributes of interest (stand age, dominant species, site index, and stem density) for a 55 Mha study region in British Columbia, Canada. First, via image segmentation, spectrally homogenous objects were derived from Landsat surface-reflectance pixel composites. Second, a suite of Landsat-based predictors (e.g., spectral indices, disturbance history, and forest structure) and ancillary variables (e.g., geographic, topographic, and climatic) were derived for these units and used to develop predictive models of target attributes. For the often difficult classification of dominant species, two modelling approaches were compared: (a) a global Random Forests model calibrated with training samples collected over the entire study area, and (b) an ensemble of local models, each calibrated with spatially constrained local samples. Accuracy assessment based upon independent validation samples revealed that the ensemble of local models was more accurate and efficient for species classification, achieving an overall accuracy of 72% for the species which dominate 80% of the forested areas in the province. Results indicated that site index had the highest agreement between predicted and reference (R2 = 0.74, %RMSE = 23.1%), followed by stand age (R2 = 0.62, %RMSE = 35.6%), and stem density (R2 = 0.33, %RMSE = 65.2%). Inventory attributes mapped at the image-derived unit level captured much finer details than traditional polygon-based inventory, yet can be readily reassembled into these larger units for strategic forest planning purposes. Based upon this work, we conclude that in a multi-source forest monitoring program, spatially localized and detailed characterizations enabled by time series of Landsat observations in conjunction with ancillary data can be used to support strategic inventory activities over large areas.  相似文献   
7.
基于2012年6~8月的实测水汽同位素数据及相关气象数据,对黑河中游夏季昼夜的同位素基本特征、水汽来源方向及潜在蒸发源地进行了研究。结果表明:空气水汽线斜率白天大于夜晚和水汽过量氘值白天大于夜晚,综合说明白天局地蒸发较夜晚强烈;夏季受西风水汽影响显著。其中,6月主要受西风水汽和北冰洋水汽影响,7、8月主要受西风水汽和东南方向水汽影响,且8月受东南方向水汽影响最为明显;水汽运移路径上下垫面地形和气压带移动会影响水汽后向轨迹高度,西北方向上水汽输送通道较顺畅,风速较大,有利于水汽的输送;水汽蒸发源地主要集中在研究区周围及以东、以北部,其次是西北部。绿洲是主要的水汽蒸发源地,其次是城市和河流,白天较夜晚局地蒸发强烈且面积大。  相似文献   
8.
Zhou  Kan  Liu  Baoyin  Fan  Jie 《地理学报(英文版)》2020,30(8):1363-1381
Journal of Geographical Sciences - The border areas of the Tibetan Plateau and the neighboring mountainous areas have a high incidence of earthquakes with a magnitude greater than Ms 5.0, as well...  相似文献   
9.
Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system. Meanwhile, the cryosphere's hydrological process is receiving extensive attention, and its water problem needs to be understood from multiple perspectives. As the main part of the Chinese cryosphere, the Tibetan Plateau faces significant climate and environmental change. There are active interaction and pronounced feedback between the environment and ETa in the cryosphere. This article mainly focuses on the research progress of ETa in the Tibetan Plateau. It first reviews the ETa process, characteristics, and impact factors of typical underlying surfaces in the Tibetan Plateau (alpine meadows, alpine steppes, alpine wetlands, alpine forests, lakes). Then it compares the temporal and spatial variations of ETa at different scales. In addition, considering the current greening of cryosphere vegetation due to climate change, it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号