首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   25篇
  国内免费   10篇
测绘学   119篇
大气科学   11篇
地球物理   33篇
地质学   57篇
海洋学   7篇
天文学   2篇
综合类   13篇
自然地理   19篇
  2022年   14篇
  2021年   5篇
  2020年   13篇
  2019年   11篇
  2018年   12篇
  2017年   23篇
  2016年   14篇
  2015年   18篇
  2014年   19篇
  2013年   18篇
  2012年   16篇
  2011年   15篇
  2010年   6篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
1.
Historically, observing snow depth over large areas has been difficult. When snow depth observations are sparse, regression models can be used to infer the snow depth over a given area. Data sparsity has also left many important questions about such inference unexamined. Improved inference, or estimation, of snow depth and its spatial distribution from a given set of observations can benefit a wide range of applications from water resource management, to ecological studies, to validation of satellite estimates of snow pack. The development of Light Detection and Ranging (LiDAR) technology has provided non‐sparse snow depth measurements, which we use in this study, to address fundamental questions about snow depth inference using both sparse and non‐sparse observations. For example, when are more data needed and when are data redundant? Results apply to both traditional and manual snow depth measurements and to LiDAR observations. Through sampling experiments on high‐resolution LiDAR snow depth observations at six separate 1.17‐km2 sites in the Colorado Rocky Mountains, we provide novel perspectives on a variety of issues affecting the regression estimation of snow depth from sparse observations. We measure the effects of observation count, random selection of observations, quality of predictor variables, and cross‐validation procedures using three skill metrics: percent error in total snow volume, root mean squared error (RMSE), and R2. Extremes of predictor quality are used to understand the range of its effect; how do predictors downloaded from internet perform against more accurate predictors measured by LiDAR? Whereas cross validation remains the only option for validating inference from sparse observations, in our experiments, the full set of LiDAR‐measured snow depths can be considered the ‘true’ spatial distribution and used to understand cross‐validation bias at the spatial scale of inference. We model at the 30‐m resolution of readily available predictors, which is a popular spatial resolution in the literature. Three regression models are also compared, and we briefly examine how sampling design affects model skill. Results quantify the primary dependence of each skill metric on observation count that ranges over three orders of magnitude, doubling at each step from 25 up to 3200. Whereas uncertainty (resulting from random selection of observations) in percent error of true total snow volume is typically well constrained by 100–200 observations, there is considerable uncertainty in the inferred spatial distribution (R2) even at medium observation counts (200–800). We show that percent error in total snow volume is not sensitive to predictor quality, although RMSE and R2 (measures of spatial distribution) often depend critically on it. Inaccuracies of downloaded predictors (most often the vegetation predictors) can easily require a quadrupling of observation count to match RMSE and R2 scores obtained by LiDAR‐measured predictors. Under cross validation, the RMSE and R2 skill measures are consistently biased towards poorer results than their true validations. This is primarily a result of greater variance at the spatial scales of point observations used for cross validation than at the 30‐m resolution of the model. The magnitude of this bias depends on individual site characteristics, observation count (for our experimental design), and sampling design. Sampling designs that maximize independent information maximize cross‐validation bias but also maximize true R2. The bagging tree model is found to generally outperform the other regression models in the study on several criteria. Finally, we discuss and recommend use of LiDAR in conjunction with regression modelling to advance understanding of snow depth spatial distribution at spatial scales of thousands of square kilometres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想。本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法。首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取;然后对二者进行加权平均特征级融合以获取更具唯一性的像元特征;最后由稀疏多项式逻辑回归分类器对融合结果进行分类。结果表明,本文方法能有效地提高分类精度,而且具有较强的稳健性。  相似文献   
3.
机载LiDAR采集的点云数据中会存在一些局部区域地面点稀疏的情况,利用这些稀疏地面点构建DEM时会出现“三角面片化”的问题,严重影响DEM的质量。为此,本文提出了一种局部稀疏地面点云与已有DEM的融合方法:将稀疏点云作为高精度控制点,在尽量保持原始DEM的地形形态特征的前提下,通过高斯核函数加权迭代插值算法对DEM进行高程局部改正,实现稀疏点云与DEM的一致性融合。试验分析表明,融合后的点云数据得到了较好的补充,由此构建的DEM地形形态自然,在精度上相对于融合前的稀疏地面点云有一定改善,在弱精度区域的可靠性有显著提升。  相似文献   
4.
高光谱遥感影像混合像元分解研究进展   总被引:6,自引:1,他引:5  
受高光谱成像仪低空间分辨率及复杂地物的影响,高光谱遥感图像存在大量混合像元。为提高地表分类精度以及满足亚像元级目标探测的需求,混合像元分解技术一直是高光谱遥感研究热点之一。本文主要对高光谱混合像元分解技术中的核心问题:端元数目估计、端元提取算法、丰度估计算法进行综述,系统地分析了各种典型算法的原理及优缺点,进一步阐述研究过程中建立高精度遥感混合反演模型与遥感产品业务化中的混合像元分解技术难题,同时针对今后混合像元分解技术发展方向,指出在继续引入新型算法理论方法基础上,结合用户应用需求,推进高光谱混合像元分解算法业务化应用,为高光谱遥感工程化应用提供支持。  相似文献   
5.
基于改进K-SVD字典学习方法的地震数据去噪   总被引:2,自引:0,他引:2  
为实现更好的地震数据去噪技术,笔者引入一种新的算法:快速迭代收缩阀值法(FISTA),通过FISTA和K-奇异值分解(K-SVD)不断迭代更新K-SVD字典,利用更新得到的K-SVD字典对地震数据进行稀疏表示,去除稀疏系数中较小的数值,使数据中的随机噪声得到压制。对层状模型合成地震记录,Marmousi模型合成地震记录以及实际地震数据进行对比实验,得出FISTA算法较OMP算法能更好地提高地震数据的信噪比,同时有效地保护了反射信号。  相似文献   
6.
根据GPS数据处理中的Kalman滤波状态转移矩阵和设计矩阵大量存在零元素的特点,将其构造成特定稀疏矩阵.再利用稀疏矩阵乘法,同时结合矩阵对称性、矩阵求逆降维等方法,可大大减少Kalman滤波的乘法次数.在非差C/A伪距情况下,该算法乘法总次数不到传统算法的1/3;在双差伪距P1,P2 双差载波情况下,该算法乘法总次数甚至不到1/6;其耗时也只有传统算法的1/3左右,因而大大提高了Kalman滤波的计算效率.  相似文献   
7.
动校正是地震数据处理中的重要步骤,但它在校正过程中会产生子波拉伸畸变效应,随着偏移距的增大,会出现主频降低、振幅扩大的现象。由于存在拉伸畸变,同相轴未被拉平,导致非同相叠加,会引起水平叠加剖面的频率失真和分辨率下降,因此,拉伸校正是提高水平叠加剖面分辨率的关键。子波拉伸畸变在曲波稀疏域中是不相干的,可以将拉伸校正视为是一个非线性优化过程。通过度量稀疏域中数据的稀疏性,使用一种快速有效的算法,来优化子波拉伸畸变生成的非线性问题,最终实现消除子波拉伸畸变的目的。曲波稀疏变换拉伸校正方法能够消除由动校正带来的子波拉伸畸变,恢复远偏移距处的高频信息,校平同相轴。综合模型数据和实际资料处理,曲波稀疏拉伸校正方法能够显著提高水平叠加剖面的分辨率。  相似文献   
8.
为了提高人脸识别率及更好地显示人脸特征,本文提出了一种基于镜像图的LRC和CRC偏差结合的人脸识别方法.该方法首先生成一种镜像人脸,再通过融合原始人脸和镜像人脸形成新的混合训练样本,最后利用LRC和CRC偏差结合进行人脸识别.新方法增加了训练样本的数目,克服了由于光照和姿态等外部因素带来的影响.实验结果表明,镜像图与LRC和CRC偏差结合的人脸识别方法提高了人脸识别的准确性.  相似文献   
9.
Satellite remote sensing provides an alternative to time-consuming and labor intensive in situ measurements of biophysical variables in agricultural crops required for precision agriculture applications. In orchards, however, the spatial resolution causes mixtures of canopies and background (i.e. soil, grass and shadow), hampering the estimation of these biophysical variables. Furthermore, variable background mixtures obstruct meaningful comparisons between different orchard blocks, rows or within each row. Current correction methodologies use spectral differences between canopies and background, but struggle with a vegetated orchard floor. This background influence and the lack of a generic solution are addressed in this study.Firstly, the problem was demonstrated in a controlled environment for vegetation indices sensitive to chlorophyll content, water content and leaf area index. Afterwards, traditional background correction methods (i.e. soil-adjusted vegetation indices and signal unmixing) were compared to the proposed vegetation index correction. This correction was based on the mixing degree of each pixel (i.e. tree cover fraction) to rescale the vegetation indices accordingly and was applied to synthetic and WorldView-2 satellite imagery. Through the correction, the effect of background admixture for vegetation indices was reduced, and the estimation of biophysical variables was improved (ΔR2 = 0.2–0.31).  相似文献   
10.
基于时间序列叶面积指数稀疏表示的作物种植区域提取   总被引:3,自引:0,他引:3  
王鹏新  荀兰  李俐  王蕾  孔庆玲 《遥感学报》2019,23(5):959-970
以华北平原黄河以北地区为研究区域,以时间序列叶面积指数LAI(Leaf Area Index)傅里叶变换的谐波特征作为不同作物识别的数据源,利用稀疏表示的分类方法识别2007年—2016年冬小麦、春玉米、夏玉米等主要农作物种植区域。首先利用上包络线Savitzky-Golay滤波分别对2007年—2016年的时间序列MODIS LAI曲线进行重构,进而对重构的年时间序列LAI进行傅里叶变换,以0—5级谐波振幅、1—5级谐波相位作为作物识别的依据,基于各类地物的训练样本,通过在线字典学习算法构建稀疏表示方法的判别字典,对每个待测样本利用正交匹配追踪算法求解稀疏系数,从而计算对应于各类地物的重构误差,根据最小重构误差判定待测样本的作物类型,并对作物识别结果的位置精度进行验证。结果表明,2007年—2016年作物识别的总体精度为77.97%,Kappa系数为0.74,表明本文提出的方法可以用于研究区域主要作物种植区域的提取。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号